論文の概要: Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images
- arxiv url: http://arxiv.org/abs/2506.03420v1
- Date: Tue, 03 Jun 2025 22:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.067314
- Title: Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images
- Title(参考訳): ISIC 2024非Dermoscopic 3D-TBP画像からの皮膚癌検出のためのセグメンテーション支援分類とGBDTのハイブリッドアンサンブル
- Authors: Muhammad Zubair Hasan, Fahmida Yasmin Rifat,
- Abstract要約: 本研究は,皮膚病変の分類のためのハイブリッドマシンと深層学習に基づくアプローチを提案する。
3D全体写真(TBP)から抽出した401,059個の画像からなり、非皮膚内視鏡的なスマートフォンのような状態をエミュレートする。
予測は、エンジニアリングされた特徴と患者固有の関係指標によって強化された、勾配ブースト決定木(GBDT)アンサンブルで融合される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin cancer is among the most prevalent and life-threatening diseases worldwide, with early detection being critical to patient outcomes. This work presents a hybrid machine and deep learning-based approach for classifying malignant and benign skin lesions using the SLICE-3D dataset from ISIC 2024, which comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions. Our method combines vision transformers (EVA02) and our designed convolutional ViT hybrid (EdgeNeXtSAC) to extract robust features, employing a segmentation-assisted classification pipeline to enhance lesion localization. Predictions from these models are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics. To address class imbalance and improve generalization, we augment malignant cases with Stable Diffusion-generated synthetic lesions and apply a diagnosis-informed relabeling strategy to harmonize external datasets into a 3-class format. Using partial AUC (pAUC) above 80 percent true positive rate (TPR) as the evaluation metric, our approach achieves a pAUC of 0.1755 -- the highest among all configurations. These results underscore the potential of hybrid, interpretable AI systems for skin cancer triage in telemedicine and resource-constrained settings.
- Abstract(参考訳): 皮膚がんは世界中で最も流行し、生命を脅かす疾患の1つであり、早期発見は患者の予後にとって重要なものである。
本研究は, 3D Total Body Photography (TBP) から抽出した401,059個のトリプド病変画像からなるISIC 2024のSLICE-3Dデータセットを用いて, 悪性および良性皮膚病変を分類するハイブリッドマシンと深層学習に基づくアプローチを提案する。
本手法は視覚変換器 (EVA02) と設計した畳み込み型ViTハイブリッド (EdgeNeXtSAC) を併用して頑健な特徴の抽出を行う。
これらのモデルからの予測は、工学的特徴と患者固有の関係指標によって強化された勾配ブースト決定木(GBDT)アンサンブルで融合される。
クラス不均衡に対処し, 一般化を改善するため, 安定拡散産生性合成病変を伴う悪性症例を増強し, 診断インフォームド・レザベリング・ストラテジーを適用して, 外部データセットを3クラスに調和させる。
評価指標としてAUC (pAUC) が80%以上の正の値 (TPR) を上回り, 提案手法はpAUCが0.1755であり, 全構成の中で最高である。
これらの結果は、遠隔医療や資源制約のある環境での皮膚がんトリアージのためのハイブリッドで解釈可能なAIシステムの可能性を強調している。
関連論文リスト
- Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation [0.0]
StyleGANは利用可能な3Rバイオプシーパッチで訓練され、その後、1万のリアルな合成画像を生成するために使用された。
これらは、ResNet-18分類器をバイナリーリジェクション分類のために訓練するための様々な構成において、レジェクション無しのサンプルである実際の0Rサンプルと組み合わせられた。
その結果, 実検体と組み合わせて使用する場合, 合成データにより分類性能が向上することが示唆された。
論文 参考訳(メタデータ) (2025-05-26T09:26:36Z) - 3D Nephrographic Image Synthesis in CT Urography with the Diffusion Model and Swin Transformer [3.8557197729550485]
提案手法は,高品質な3次元腎画像の合成を効果的に行う。
画像の品質を損なうことなく、CTUの放射線線量を33.3%削減することができる。
論文 参考訳(メタデータ) (2025-02-26T23:22:31Z) - Ensemble Learning and 3D Pix2Pix for Comprehensive Brain Tumor Analysis in Multimodal MRI [2.104687387907779]
本研究では,ハイブリッドトランスモデルと畳み込みニューラルネットワーク(CNN)を用いたアンサンブル学習の強みを活用した統合的アプローチを提案する。
本手法は,アキシャルアテンションとトランスフォーマーエンコーダを併用して,高機能な空間関係モデリングを行う。
その結果,Dice similarity Coefficient (DSC), Hausdorff Distance (HD95), Structure similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE) などの画期的な評価が得られた。
論文 参考訳(メタデータ) (2024-12-16T15:10:53Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。