論文の概要: HANS-Net: Hyperbolic Convolution and Adaptive Temporal Attention for Accurate and Generalizable Liver and Tumor Segmentation in CT Imaging
- arxiv url: http://arxiv.org/abs/2507.11325v1
- Date: Tue, 15 Jul 2025 13:56:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.138298
- Title: HANS-Net: Hyperbolic Convolution and Adaptive Temporal Attention for Accurate and Generalizable Liver and Tumor Segmentation in CT Imaging
- Title(参考訳): HANS-Net:高ボリック・コンボリューションとアダプティブ・テンポラル・アテンション
- Authors: Arefin Ittesafun Abian, Ripon Kumar Debnath, Md. Abdur Rahman, Mohaimenul Azam Khan Raiaan, Md Rafiqul Islam, Asif Karim, Reem E. Mohamed, Sami Azam,
- Abstract要約: 腹部CT像における肝・腫瘍の正確なセグメンテーションは確実な診断と治療計画に重要である。
ニューラル表現とシナプティック・プラスティック・ネットワーク(HANS-Net)を用いたハイパーボリック・コンボリューションの導入
HANS-Netは、階層的幾何表現のための双曲的畳み込み、マルチスケールテクスチャ学習のためのウェーブレットインスパイアされた分解モジュール、暗黙の神経表現分岐を組み合わせた。
- 参考スコア(独自算出の注目度): 1.3149714289117207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate liver and tumor segmentation on abdominal CT images is critical for reliable diagnosis and treatment planning, but remains challenging due to complex anatomical structures, variability in tumor appearance, and limited annotated data. To address these issues, we introduce Hyperbolic-convolutions Adaptive-temporal-attention with Neural-representation and Synaptic-plasticity Network (HANS-Net), a novel segmentation framework that synergistically combines hyperbolic convolutions for hierarchical geometric representation, a wavelet-inspired decomposition module for multi-scale texture learning, a biologically motivated synaptic plasticity mechanism for adaptive feature enhancement, and an implicit neural representation branch to model fine-grained and continuous anatomical boundaries. Additionally, we incorporate uncertainty-aware Monte Carlo dropout to quantify prediction confidence and lightweight temporal attention to improve inter-slice consistency without sacrificing efficiency. Extensive evaluations of the LiTS dataset demonstrate that HANS-Net achieves a mean Dice score of 93.26%, an IoU of 88.09%, an average symmetric surface distance (ASSD) of 0.72 mm, and a volume overlap error (VOE) of 11.91%. Furthermore, cross-dataset validation on the 3D-IRCADb-01 dataset obtains an average Dice of 87.45%, IoU of 80.30%, ASSD of 1.525 mm, and VOE of 19.71%, indicating strong generalization across different datasets. These results confirm the effectiveness and robustness of HANS-Net in providing anatomically consistent, accurate, and confident liver and tumor segmentation.
- Abstract(参考訳): 腹部CT画像における肝・腫瘍の正確な分節化は診断・治療計画に重要であるが, 複雑な解剖学的構造, 腫瘍の外観の多様性, 限られた注釈データにより, いまだに困難である。
これらの課題に対処するために、階層的幾何学的表現のための双曲的畳み込みを相乗的に組み合わせた新しいセグメンテーションフレームワークである神経表現とシナプス塑性ネットワーク(HANS-Net)、多スケールテクスチャ学習のためのウェーブレットインスパイアされた分解モジュール、適応的特徴増強のための生物学的に動機付けられたシナプス可塑性機構、微粒で連続的な解剖学的境界をモデル化するための暗黙的な神経表現分岐を導入する。
さらに,不確実性を考慮したモンテカルロのドロップアウトを取り入れ,予測信頼性と軽量時間的注意を定量化し,効率を犠牲にすることなくスライス間整合性を改善する。
LiTSデータセットの大規模な評価は、HANS-Netが平均Diceスコア93.26%、IoU88.09%、平均対称表面距離0.72mm、ボリュームオーバーラップ誤差11.91%を達成したことを示している。
さらに、3D-IRCADb-01データセットのクロスデータセット検証では、平均Diceが87.45%、IoUが80.30%、ASSDが1.525mm、VOEが19.71%となり、データセット間の強い一般化が示されている。
これらの結果は, 解剖学的に整合性があり, 正確で確実な肝・腫瘍の分節形成におけるHANS-Netの有効性と堅牢性を確認した。
関連論文リスト
- Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images [0.0]
本研究は,皮膚病変の分類のためのハイブリッドマシンと深層学習に基づくアプローチを提案する。
3D全体写真(TBP)から抽出した401,059個の画像からなり、非皮膚内視鏡的なスマートフォンのような状態をエミュレートする。
予測は、エンジニアリングされた特徴と患者固有の関係指標によって強化された、勾配ブースト決定木(GBDT)アンサンブルで融合される。
論文 参考訳(メタデータ) (2025-06-03T22:00:03Z) - STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis [9.511932098831322]
大腸癌肝転移(KCCM)を予測するためのマルチモーダル時間グラフニューラルネットワーク(STG)フレームワークを提案する。
我々のSTGフレームワークはCT画像と臨床データをヘテロジニアスグラフ構造に結合し,腫瘍分布エッジの同時モデリングと時間的進化を可能にする。
軽量版ではパラメータ数を78.55%削減し、最先端の性能を維持している。
論文 参考訳(メタデータ) (2025-05-06T02:41:34Z) - ScaleMAI: Accelerating the Development of Trusted Datasets and AI Models [46.80682547774335]
我々はAI統合データキュレーションとアノテーションのエージェントであるScaleMAIを提案する。
まず、ScaleMAIは25,362個のCTスキャンを作成した。
第2に、プログレッシブなヒューマン・イン・ザ・ループのイテレーションを通じて、ScaleMAIはFragship AI Modelを提供する。
論文 参考訳(メタデータ) (2025-01-06T22:12:00Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
本稿では、補間潜在空間を拡張的特徴相互作用モデリングに活用する新しい相乗論的理論を提案する。
論文 参考訳(メタデータ) (2024-08-08T14:41:32Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - LATUP-Net: A Lightweight 3D Attention U-Net with Parallel Convolutions for Brain Tumor Segmentation [7.1789008189318455]
LATUP-Netは、並列畳み込みを備えた軽量な3DアテンションU-Netである。
高いセグメンテーション性能を維持しつつ、計算要求を大幅に削減するように設計されている。
BraTS 2020データセットの平均Diceスコアは88.41%、83.82%、73.67%であり、BraTS 2021データセットでは、それぞれ90.29%、89.54%、83.92%である。
論文 参考訳(メタデータ) (2024-04-09T00:05:45Z) - Enhancing mTBI Diagnosis with Residual Triplet Convolutional Neural
Network Using 3D CT [1.0621519762024807]
3D Computed Tomography (CT) 画像を用いた mTBI 診断の革新的手法を提案する。
我々は,mTBI症例と健常症例を識別するために,Residual Triplet Convolutional Neural Network (RTCNN)モデルを提案する。
我々のRTCNNモデルはmTBI診断において有望な性能を示し、平均精度は94.3%、感度は94.1%、特異性は95.2%である。
論文 参考訳(メタデータ) (2023-11-23T20:41:46Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation [28.650980942429726]
細かな特徴を抽出するための2つのウィンドウ化戦略に従うボリューム視覚変換器を提案する。
FeTS Challenge 2022データセット上で,ネットワークアーキテクチャをトレーニングし,評価した。
オンライン検証データセットのパフォーマンスは以下の通りである。 Dice similarity Score of 81.71%, 91.38%, 85.40%。
論文 参考訳(メタデータ) (2022-09-16T03:55:48Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。