論文の概要: DistRAG: Towards Distance-Based Spatial Reasoning in LLMs
- arxiv url: http://arxiv.org/abs/2506.03424v1
- Date: Tue, 03 Jun 2025 22:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.06829
- Title: DistRAG: Towards Distance-Based Spatial Reasoning in LLMs
- Title(参考訳): DistRAG:LLMにおける距離空間推論に向けて
- Authors: Nicole R Schneider, Nandini Ramachandran, Kent O'Sullivan, Hanan Samet,
- Abstract要約: 我々は,LLMが学習中に明示的に学習されていない関連空間情報を検索することのできる新しいアプローチであるDistRAGを開発した。
本手法は,都市と町の間の測地距離をグラフにエンコードし,その問合せに関連する文脈部分グラフを検索する。
- 参考スコア(独自算出の注目度): 1.1435139523855764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real world tasks where Large Language Models (LLMs) can be used require spatial reasoning, like Point of Interest (POI) recommendation and itinerary planning. However, on their own LLMs lack reliable spatial reasoning capabilities, especially about distances. To address this problem, we develop a novel approach, DistRAG, that enables an LLM to retrieve relevant spatial information not explicitly learned during training. Our method encodes the geodesic distances between cities and towns in a graph and retrieves a context subgraph relevant to the question. Using this technique, our method enables an LLM to answer distance-based reasoning questions that it otherwise cannot answer. Given the vast array of possible places an LLM could be asked about, DistRAG offers a flexible first step towards providing a rudimentary `world model' to complement the linguistic knowledge held in LLMs.
- Abstract(参考訳): LLM(Large Language Models)が使える現実的なタスクの多くは、POI(Point of Interest)推奨や反復計画のような空間的推論を必要とする。
しかし、彼ら自身のLLMでは、特に距離に関する信頼性の高い空間推論能力が欠如している。
この問題に対処するために,LLMがトレーニング中に明示的に学習されていない関連空間情報を検索できる新しいアプローチであるDistRAGを開発した。
本手法は,都市と町の間の測地距離をグラフにエンコードし,その問合せに関連する文脈部分グラフを検索する。
この手法を用いることで、LLMは、他の方法では答えられないような距離に基づく推論問題に答えることができる。
LLMが尋ねられる可能性のある膨大な場所を考えると、DistRAGはLLMが持つ言語知識を補完する初歩的な「世界モデル」を提供するための柔軟な第一歩を提供する。
関連論文リスト
- Can LLMs Learn to Map the World from Local Descriptions? [50.490593949836146]
本研究では,Large Language Models (LLMs) がコヒーレントなグローバル空間認識を構築できるかどうかを検討する。
都市環境を模擬した実験により, LLMは実空間分布に一致した潜在表現を示すことを示した。
論文 参考訳(メタデータ) (2025-05-27T08:22:58Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
大規模言語モデル(LLM)は、強力な一般化可能な推論と計画能力を示している。
本研究では,LLMのゼロショットナビゲーションと経路生成機能について,データセットの構築と評価プロトコルの提案により検討する。
このようなタスクが適切に構成されている場合、現代のLCMは、目標に到達するために生成された動きでナビゲーションを自律的に精錬しながら障害を回避するためのかなりの計画能力を示す。
論文 参考訳(メタデータ) (2025-03-10T13:39:09Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
本稿では,大量のオフラインデータを解釈可能な一階述語論理規則に自動抽出する新しいフレームワーク,RuAGを提案する。
我々は,自然言語処理,時系列,意思決定,産業タスクなど,公共および民間の産業タスクに関する枠組みを評価する。
論文 参考訳(メタデータ) (2024-11-04T00:01:34Z) - Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning [2.313664320808389]
本研究では、空間-関係変換とカリキュラムQ-Learning(S2RCQL)という革新的なモデルを提案する。
そこで我々は,Qラーニングに基づく経路計画アルゴリズムを設計し,文脈不整合の幻覚を緩和する。
プロンプトの補助情報として状態反応のQ-値を用いて,LLMの幻覚を補正する。
論文 参考訳(メタデータ) (2024-08-23T16:02:54Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Can LLMs Compute with Reasons? [4.995189458714599]
大規模言語モデル(LLM)は複雑な数学的タスクに苦しむことが多く、誤った答えを「幻覚させる」傾向がある。
本研究では,Small LangSLMの分散ネットワークを利用した「帰納学習」手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T12:04:25Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。