A Complexity-Based Approach to Quantum Observable Equilibration
- URL: http://arxiv.org/abs/2506.03447v1
- Date: Tue, 03 Jun 2025 23:16:35 GMT
- Title: A Complexity-Based Approach to Quantum Observable Equilibration
- Authors: Marcos G. Alpino, Tiago Debarba, Reinaldo O. Vianna, André T. Cesário,
- Abstract summary: We investigate the role of a statistical complexity measure to assign equilibration in isolated quantum systems.<n>We extend our analysis to study how the complexity of the quantum states evolves, providing insight into the transition from initial coherence to equilibrium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the role of a statistical complexity measure to assign equilibration in isolated quantum systems. While unitary dynamics preserve global purity, expectation values of observables often exhibit equilibration-like behavior, raising the question of whether complexity can track this process. In addition to examining observable equilibration, we extend our analysis to study how the complexity of the quantum states evolves, providing insight into the transition from initial coherence to equilibrium. We define a classical statistical complexity measure based on observable entropy and deviation from equilibrium, which captures the dynamical progression towards equilibration and effectively distinguishes between complex and non-complex trajectories. In particular, our measure is sensitive to non-complex dynamics, such as the quasi-periodic behavior exhibited by low effective dimension initial states, where the systems explore a limited region of the Hilbert space as they oscillate in an informational coherence-preserving manner. These findings are supported by numerical simulations of an Ising-like non-integrable Hamiltonian spin-chain model. Our work provides new insight into the emergence of equilibrium behavior from unitary dynamics and advances complexity as a meaningful tool in the study of the emergence of classicality in microscopic systems.
Related papers
- Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
Deep Signature is a novel computationally tractable framework that characterizes complex dynamics and interatomic interactions.<n>Our approach incorporates soft spectral clustering that locally aggregates cooperative dynamics to reduce the size of the system, as well as signature transform to provide a global characterization of the non-smooth interactive dynamics.
arXiv Detail & Related papers (2024-10-03T16:37:48Z) - Spectral chaos bounds from scaling theory of maximally efficient quantum-dynamical scrambling [44.99833362998488]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.<n>We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.<n>We establish that scaling predictions are matched by a privileged process and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all time scales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Predictive complexity of quantum subsystems [0.0]
We define predictive states and predictive complexity for quantum systems composed of distinct subsystems.
Predictions are formed by equivalence classes of state vectors in the exterior Hilbert space.
It can also serve as a local order parameter that can distinguish long and short range entanglement.
arXiv Detail & Related papers (2023-09-26T18:58:56Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of Bose-Einstein Condensation and Quenched Formation
Dynamics [0.0]
The emergence of macroscopic coherence in a many-body quantum system is a ubiquitous phenomenon across different physical systems and scales.
Characteristic examples include symmetry-breaking in the Kibble-Zurek mechanism, coarsening and phase-ordering kinetics, and universaltemporal scaling around non-thermal fixed points.
The Chapter concludes with a brief review of the potential relevance of some of these concepts in modelling the large-scale distribution of dark matter in the universe.
arXiv Detail & Related papers (2023-04-19T10:12:52Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Krylov Localization and suppression of complexity [0.0]
We investigate Krylov complexity for the case of interacting integrable models at finite size.
We find that complexity saturation is suppressed as compared to chaotic systems.
We demonstrate this behavior for an interacting integrable model, the XXZ spin chain.
arXiv Detail & Related papers (2021-12-22T18:45:32Z) - Universal equilibration dynamics of the Sachdev-Ye-Kitaev model [11.353329565587574]
We present a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian.
We reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information, exhibit within numerical resolution a universal equilibration process.
This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution.
arXiv Detail & Related papers (2021-08-03T19:43:58Z) - Unpredictability and entanglement in open quantum systems [0.0]
We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
arXiv Detail & Related papers (2021-06-14T18:00:12Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.