Unpredictability and entanglement in open quantum systems
- URL: http://arxiv.org/abs/2106.07673v1
- Date: Mon, 14 Jun 2021 18:00:12 GMT
- Title: Unpredictability and entanglement in open quantum systems
- Authors: Javad Kazemi and Hendrik Weimer
- Abstract summary: We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate dynamical many-body systems capable of universal computation,
which leads to their properties being unpredictable unless the dynamics is
simulated from the beginning to the end. Unpredictable behavior can be
quantitatively assessed in terms of a data compression of the states occurring
during the time evolution, which is closely related to their Kolmogorov
complexity. We analyze a master equation embedding of classical cellular
automata and demonstrate the existence of a phase transition between
predictable and unpredictable behavior as a function of the random noise
introduced by the embedding. We then turn to have this dynamics competing with
a second process inducing quantum fluctuations and dissipatively driving the
system to a highly entangled steady state. Strikingly, for intermediate
strength of the quantum fluctuations, we find that both unpredictability and
quantum entanglement can coexist even in the long time limit. Finally, we show
that the required many-body interactions for the cellular automaton embedding
can be efficiently realized within a variational quantum simulator platform
based on ultracold Rydberg atoms with high fidelity.
Related papers
- Pseudochaotic Many-Body Dynamics as a Pseudorandom State Generator [5.835366072870476]
We introduce a new class of quantum many-body dynamics in quantum simulations, namely 'pseudochaotic dynamics'
We show that the pseudochaotic dynamics can generate a representative pseudo-quantum state, specifically a random subset-phase state.
arXiv Detail & Related papers (2024-10-28T17:58:12Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Emergent quantum correlations and collective behavior in non-interacting
quantum systems subject to stochastic resetting [0.0]
We investigate the dynamics of a non-interacting spin system undergoing coherent oscillations in the presence of Rabi resetting.
We show that resetting generally induces long-range quantum and classical correlations.
In the thermodynamic limit, the spin system can feature collective behavior.
arXiv Detail & Related papers (2022-02-25T12:22:19Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z) - Non-equilibrium phase transitions in $(1+1)$-dimensional quantum
cellular automata with controllable quantum correlations [0.0]
We introduce and investigate the dynamics of a class of $(1+1)$-dimensional quantum cellular automata.
We show that projected entangled pair state tensor networks permit a natural and efficient representation of the cellular automaton.
arXiv Detail & Related papers (2020-02-21T11:47:01Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.