論文の概要: Differentially Private Distribution Release of Gaussian Mixture Models via KL-Divergence Minimization
- arxiv url: http://arxiv.org/abs/2506.03467v1
- Date: Wed, 04 Jun 2025 00:40:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.094228
- Title: Differentially Private Distribution Release of Gaussian Mixture Models via KL-Divergence Minimization
- Title(参考訳): KL-Divergence最小化によるガウス混合モデルの微分プライベート分布解放
- Authors: Hang Liu, Anna Scaglione, Sean Peisert,
- Abstract要約: 本稿では,GMMパラメータに厳格な乱摂動を付加するDP機構を提案する。
当社のアプローチは、高いユーティリティを維持しながら、強力なプライバシ保証を実現する。
- 参考スコア(独自算出の注目度): 5.615206798152645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Mixture Models (GMMs) are widely used statistical models for representing multi-modal data distributions, with numerous applications in data mining, pattern recognition, data simulation, and machine learning. However, recent research has shown that releasing GMM parameters poses significant privacy risks, potentially exposing sensitive information about the underlying data. In this paper, we address the challenge of releasing GMM parameters while ensuring differential privacy (DP) guarantees. Specifically, we focus on the privacy protection of mixture weights, component means, and covariance matrices. We propose to use Kullback-Leibler (KL) divergence as a utility metric to assess the accuracy of the released GMM, as it captures the joint impact of noise perturbation on all the model parameters. To achieve privacy, we introduce a DP mechanism that adds carefully calibrated random perturbations to the GMM parameters. Through theoretical analysis, we quantify the effects of privacy budget allocation and perturbation statistics on the DP guarantee, and derive a tractable expression for evaluating KL divergence. We formulate and solve an optimization problem to minimize the KL divergence between the released and original models, subject to a given $(\epsilon, \delta)$-DP constraint. Extensive experiments on both synthetic and real-world datasets demonstrate that our approach achieves strong privacy guarantees while maintaining high utility.
- Abstract(参考訳): ガウス混合モデル(英: Gaussian Mixture Models、GMM)は、データマイニング、パターン認識、データシミュレーション、機械学習など、多モードデータ分布を表す統計モデルとして広く使われている。
しかし、最近の研究では、GMMパラメータのリリースは重大なプライバシー上のリスクをもたらし、基礎となるデータに関する機密情報を漏らす可能性があることが示されている。
本稿では,差分プライバシー(DP)保証を確保しつつ,GMMパラメータをリリースするという課題に対処する。
具体的には、混合重み、成分平均、共分散行列のプライバシー保護に焦点を当てる。
我々は,すべてのモデルパラメータに対する雑音摂動の結合的影響を捉えるため,Kulback-Leibler(KL)発散を実用指標として,GMMの精度を評価することを提案する。
プライバシを実現するために,GMMパラメータに厳密に調整されたランダム摂動を付加するDP機構を導入する。
理論的解析により、DP保証に対するプライバシー予算配分と摂動統計の影響を定量化し、KLのばらつきを評価するための難解な表現を導出する。
我々は、与えられた$(\epsilon, \delta)$-DP制約の下で、解放されたモデルと原モデルのKL分散を最小化するために最適化問題を定式化し、解決する。
合成と実世界の両方のデータセットに対する大規模な実験は、我々のアプローチが高ユーティリティを維持しながら強力なプライバシー保証を実現することを示す。
関連論文リスト
- $(ε, δ)$-Differentially Private Partial Least Squares Regression [1.8666451604540077]
我々は,モデルに基づくデータのプライバシーを確保するために,$(epsilon, delta)$-differentially private PLS (edPLS)アルゴリズムを提案する。
実験により、EDPLSはトレーニングデータに固有の変動源を回復することを目的とした、効果的なプライバシー攻撃を施すことが示されている。
論文 参考訳(メタデータ) (2024-12-12T10:49:55Z) - Differentially Private Random Feature Model [52.468511541184895]
プライバシを保存するカーネルマシンに対して,差分的にプライベートな特徴モデルを作成する。
本手法は,プライバシを保護し,一般化誤差を導出する。
論文 参考訳(メタデータ) (2024-12-06T05:31:08Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy [27.906539122581293]
本稿では,モデルを共同で訓練する複数の参加者間でセンシティブなデータが分散されるシナリオに焦点を当てる。
ディープニューラルネットワークは、基礎となるトレーニングデータを記憶する強力な能力を持っている。
この問題の効果的な解決策は、勾配にランダムノイズを注入することで厳密なプライバシー保証を提供する差分プライバシを持つモデルを訓練することである。
論文 参考訳(メタデータ) (2022-12-08T16:13:35Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Towards Plausible Differentially Private ADMM Based Distributed Machine
Learning [27.730535587906168]
本稿では,PP-ADMM と IPP-ADMM という,可塑性差分ADMM アルゴリズムを提案する。
同じプライバシ保証の下では、提案アルゴリズムはモデル精度と収束率の観点から、最先端技術である。
論文 参考訳(メタデータ) (2020-08-11T03:40:55Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。