Differentially Private Distribution Release of Gaussian Mixture Models via KL-Divergence Minimization
- URL: http://arxiv.org/abs/2506.03467v1
- Date: Wed, 04 Jun 2025 00:40:24 GMT
- Title: Differentially Private Distribution Release of Gaussian Mixture Models via KL-Divergence Minimization
- Authors: Hang Liu, Anna Scaglione, Sean Peisert,
- Abstract summary: We introduce a DP mechanism that adds carefully calibrated random perturbations to the GMM parameters.<n>Our approach achieves strong privacy guarantees while maintaining high utility.
- Score: 5.615206798152645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Mixture Models (GMMs) are widely used statistical models for representing multi-modal data distributions, with numerous applications in data mining, pattern recognition, data simulation, and machine learning. However, recent research has shown that releasing GMM parameters poses significant privacy risks, potentially exposing sensitive information about the underlying data. In this paper, we address the challenge of releasing GMM parameters while ensuring differential privacy (DP) guarantees. Specifically, we focus on the privacy protection of mixture weights, component means, and covariance matrices. We propose to use Kullback-Leibler (KL) divergence as a utility metric to assess the accuracy of the released GMM, as it captures the joint impact of noise perturbation on all the model parameters. To achieve privacy, we introduce a DP mechanism that adds carefully calibrated random perturbations to the GMM parameters. Through theoretical analysis, we quantify the effects of privacy budget allocation and perturbation statistics on the DP guarantee, and derive a tractable expression for evaluating KL divergence. We formulate and solve an optimization problem to minimize the KL divergence between the released and original models, subject to a given $(\epsilon, \delta)$-DP constraint. Extensive experiments on both synthetic and real-world datasets demonstrate that our approach achieves strong privacy guarantees while maintaining high utility.
Related papers
- ImprovDML: Improved Trade-off in Private Byzantine-Resilient Distributed Machine Learning [22.85986751447643]
A common strategy involves integrating Byzantine-resilient aggregation rules with differential privacy mechanisms.<n>We propose ImprovDML, that achieves model accuracy while simultaneously ensuring privacy preservation.<n>We demonstrate that it enables an improved trade-off between model accuracy and differential privacy.
arXiv Detail & Related papers (2025-06-18T06:53:52Z) - $(ε, δ)$-Differentially Private Partial Least Squares Regression [1.8666451604540077]
We propose an $(epsilon, delta)$-differentially private PLS (edPLS) algorithm to ensure the privacy of the data underlying the model.<n> Experimental results demonstrate that edPLS effectively renders privacy attacks, aimed at recovering unique sources of variability in the training data.
arXiv Detail & Related papers (2024-12-12T10:49:55Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.<n>We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy [27.906539122581293]
This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model.
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern.
An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients.
arXiv Detail & Related papers (2022-12-08T16:13:35Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Towards Plausible Differentially Private ADMM Based Distributed Machine
Learning [27.730535587906168]
We propose a novel (Improved) Plausible differentially Private ADMM algorithm, called PP-ADMM and IPP-ADMM.
Under the same privacy guarantee, the proposed algorithms are superior to the state of the art in terms of model accuracy and convergence rate.
arXiv Detail & Related papers (2020-08-11T03:40:55Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.