論文の概要: PDSE: A Multiple Lesion Detector for CT Images using PANet and Deformable Squeeze-and-Excitation Block
- arxiv url: http://arxiv.org/abs/2506.03608v1
- Date: Wed, 04 Jun 2025 06:38:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.182575
- Title: PDSE: A Multiple Lesion Detector for CT Images using PANet and Deformable Squeeze-and-Excitation Block
- Title(参考訳): PDSE:PANetと変形性スクイーズ・アンド・励起ブロックを用いたCT画像の多重病変検出装置
- Authors: Di Fan, Heng Yu, Zhiyuan Xu,
- Abstract要約: 網膜ネットの再設計により1段階病変検出フレームワークPDSEを導入する。
低レベル特徴写像を組み込むことで,経路凝集流の増大を図る。
我々のアルゴリズムは公開DeepLesionベンチマークで0.20以上のmAPを達成した。
- 参考スコア(独自算出の注目度): 10.563907026873443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting lesions in Computed Tomography (CT) scans is a challenging task in medical image processing due to the diverse types, sizes, and locations of lesions. Recently, various one-stage and two-stage framework networks have been developed to focus on lesion localization. We introduce a one-stage lesion detection framework, PDSE, by redesigning Retinanet to achieve higher accuracy and efficiency for detecting lesions in multimodal CT images. Specifically, we enhance the path aggregation flow by incorporating a low-level feature map. Additionally, to improve model representation, we utilize the adaptive Squeeze-and-Excitation (SE) block and integrate channel feature map attention. This approach has resulted in achieving new state-of-the-art performance. Our method significantly improves the detection of small and multiscaled objects. When evaluated against other advanced algorithms on the public DeepLesion benchmark, our algorithm achieved an mAP of over 0.20.
- Abstract(参考訳): Computed Tomography(CT)スキャンにおける病変の検出は,病変の種類,大きさ,位置の多様さから,医用画像処理において困難な課題である。
近年,病変の局在に着目した一段階および二段階のフレームワークネットワークが開発されている。
マルチモーダルCT画像における病変検出の精度と効率を高めるため,レチナネットを再設計し,一段階病変検出フレームワークPDSEを導入する。
具体的には,低レベル特徴写像を組み込むことにより,経路凝集流の増大を図る。
さらに、モデル表現を改善するために、適応型Squeeze-and-Excitation(SE)ブロックを使用し、チャネル特徴マップの注意を統合する。
このアプローチは、新しい最先端のパフォーマンスを達成する結果となった。
提案手法は,小型・マルチスケールオブジェクトの検出を著しく改善する。
公開DeepLesionベンチマークで他の高度なアルゴリズムと比較して評価すると、我々のアルゴリズムは0.20以上のmAPを達成した。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - Superresolution and Segmentation of OCT scans using Multi-Stage
adversarial Guided Attention Training [18.056525121226862]
我々は,OCTスキャンを高分解能セグメンテーションラベルに変換する多段階・多識別型生成逆数ネットワーク(MultiSDGAN)を提案する。
我々は,MultiSDGANアーキテクチャに対して,チャネルと空間的注意の様々な組み合わせを評価し,比較し,より強力な特徴マップを抽出する。
その結果,Dice係数とSSIMでは21.44%,19.45%の相対的な改善が見られた。
論文 参考訳(メタデータ) (2022-06-10T00:26:55Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Anomaly Detection in Retinal Images using Multi-Scale Deep Feature
Sparse Coding [30.097208168480826]
本稿では,網膜画像の異常検出のための教師なしアプローチを導入し,この問題を克服する。
我々は,Eye-Q,IDRiD,OCTIDデータセット上での最先端のSPADEに対して,AUCスコアが7.8%,6.7%,12.1%向上した。
論文 参考訳(メタデータ) (2022-01-27T13:36:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。