Robustness of Prompting: Enhancing Robustness of Large Language Models Against Prompting Attacks
- URL: http://arxiv.org/abs/2506.03627v1
- Date: Wed, 04 Jun 2025 07:13:27 GMT
- Title: Robustness of Prompting: Enhancing Robustness of Large Language Models Against Prompting Attacks
- Authors: Lin Mu, Guowei Chu, Li Ni, Lei Sang, Zhize Wu, Peiquan Jin, Yiwen Zhang,
- Abstract summary: Robustness of Prompting (RoP) is a novel prompting strategy specifically designed to enhance the robustness of Large Language Models (LLMs)<n>RoP applies diverse perturbation methods to generate adversarial examples, which are then used to construct prompts that automatically correct input errors.<n>In the Guidance stage, RoP generates an optimal guidance prompting based on the corrected input, steering the model toward more robust and accurate inferences.
- Score: 8.901793877849155
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across various tasks by effectively utilizing a prompting strategy. However, they are highly sensitive to input perturbations, such as typographical errors or slight character order errors, which can substantially degrade their performance. Despite advances in prompting techniques, developing a prompting strategy that explicitly mitigates the negative impact of such perturbations remains an open challenge. To bridge this gap, we propose Robustness of Prompting (RoP), a novel prompting strategy specifically designed to enhance the robustness of LLMs. RoP consists of two stages: Error Correction and Guidance. In the Error Correction stage, RoP applies diverse perturbation methods to generate adversarial examples, which are then used to construct prompts that automatically correct input errors. In the Guidance stage, RoP generates an optimal guidance prompting based on the corrected input, steering the model toward more robust and accurate inferences. Through comprehensive experiments spanning arithmetic, commonsense, and logical reasoning tasks, we demonstrate that RoP significantly improves LLMs' robustness against adversarial perturbations. Notably, it maintains model accuracy with only minimal degradation compared to clean input scenarios, thereby establishing RoP as a practical and effective approach for enhancing LLM robustness in real-world applications.
Related papers
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
Chain-of-thought (CoT) reasoning encourages step-by-step intermediate reasoning during inference.<n>CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences.<n>We present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference.
arXiv Detail & Related papers (2025-07-23T08:14:36Z) - Improving Code LLM Robustness to Prompt Perturbations via Layer-Aware Model Editing [13.099973383252452]
Large language models (LLMs) are highly sensitive to prompt perturbations.<n>We introduce CREME, a novel approach that enhances LLM robustness through targeted parameter updates.<n> Experimental results show that CREME improves Pass@1 accuracy by 63% on perturbed prompts.
arXiv Detail & Related papers (2025-07-22T09:57:55Z) - Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study [8.827173113748701]
We study character- and word-level edits of task-specific instructions, which substantially degrade downstream performance.<n>We find that, on average, self-denoising achieves substantially higher performance gains than alternative strategies.
arXiv Detail & Related papers (2025-04-03T16:17:56Z) - Self-Corrective Task Planning by Inverse Prompting with Large Language Models [9.283971287618261]
We introduce InversePrompt, a novel self-corrective task planning approach.<n>Our method incorporates reasoning steps to provide clear, interpretable feedback.<n>Results on benchmark datasets show an average 16.3% higher success rate over existing LLM-based task planning methods.
arXiv Detail & Related papers (2025-03-10T13:35:51Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Patterns Over Principles: The Fragility of Inductive Reasoning in LLMs under Noisy Observations [43.491353243991284]
We introduce Robust Rule Induction, a task that evaluates large language models' capability in inferring rules from data that are fused with noisy examples.<n> Experiments across arithmetic, cryptography, and list functions reveal: (1) SRR outperforms other methods with minimal performance degradation under noise; (2) Despite slight accuracy variation, LLMs exhibit instability under noise; and (3) Counterfactual task gaps highlight LLMs' reliance on memorized patterns over genuine abstraction.
arXiv Detail & Related papers (2025-02-22T10:03:19Z) - Subtle Errors in Reasoning: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)<n>RISE injects predefined subtle errors into pivotal tokens in reasoning or steps to construct hard pairs for error mitigation.<n>Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH with only 4.5K training samples.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - Applying Pre-trained Multilingual BERT in Embeddings for Improved Malicious Prompt Injection Attacks Detection [5.78117257526028]
Large language models (LLMs) are renowned for their exceptional capabilities, and applying to a wide range of applications.
This work focuses the impact of malicious prompt injection attacks which is one of most dangerous vulnerability on real LLMs applications.
It examines to apply various BERT (Bidirectional Representations from Transformers) like multilingual BERT, DistilBert for classifying malicious prompts from legitimate prompts.
arXiv Detail & Related papers (2024-09-20T08:48:51Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.<n>Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - RoAST: Robustifying Language Models via Adversarial Perturbation with
Selective Training [105.02614392553198]
We propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST)
RoAST incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs.
We demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs.
arXiv Detail & Related papers (2023-12-07T04:23:36Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.