論文の概要: Client-Side Zero-Shot LLM Inference for Comprehensive In-Browser URL Analysis
- arxiv url: http://arxiv.org/abs/2506.03656v1
- Date: Wed, 04 Jun 2025 07:47:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.204657
- Title: Client-Side Zero-Shot LLM Inference for Comprehensive In-Browser URL Analysis
- Title(参考訳): 包括的ブラウザ内URL解析のためのクライアント側ゼロショットLLM推論
- Authors: Avihay Cohen,
- Abstract要約: 悪意のあるウェブサイトやフィッシングURLは、サイバーセキュリティのリスクがますます高まっている。
従来の検出アプローチは機械学習に依存している。
包括的URL分析のための新しいクライアントサイドフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Malicious websites and phishing URLs pose an ever-increasing cybersecurity risk, with phishing attacks growing by 40% in a single year. Traditional detection approaches rely on machine learning classifiers or rule-based scanners operating in the cloud, but these face significant challenges in generalization, privacy, and evasion by sophisticated threats. In this paper, we propose a novel client-side framework for comprehensive URL analysis that leverages zero-shot inference by a local large language model (LLM) running entirely in-browser. Our system uses a compact LLM (e.g., 3B/8B parameters) via WebLLM to perform reasoning over rich context collected from the target webpage, including static code analysis (JavaScript abstract syntax trees, structure, and code patterns), dynamic sandbox execution results (DOM changes, API calls, and network requests),and visible content. We detail the architecture and methodology of the system, which combines a real browser sandbox (using iframes) resistant to common anti-analysis techniques, with an LLM-based analyzer that assesses potential vulnerabilities and malicious behaviors without any task-specific training (zero-shot). The LLM aggregates evidence from multiple sources (code, execution trace, page content) to classify the URL as benign or malicious and to provide an explanation of the threats or security issues identified. We evaluate our approach on a diverse set of benign and malicious URLs, demonstrating that even a compact client-side model can achieve high detection accuracy and insightful explanations comparable to cloud-based solutions, while operating privately on end-user devices. The results show that client-side LLM inference is a feasible and effective solution to web threat analysis, eliminating the need to send potentially sensitive data to cloud services.
- Abstract(参考訳): 悪意のあるウェブサイトやフィッシングURLは、サイバーセキュリティのリスクが継続的に増加し、フィッシング攻撃は1年で40%増加する。
従来の検出アプローチは、クラウドで動作する機械学習分類器やルールベースのスキャナに依存しているが、これらは高度な脅威による一般化、プライバシ、回避において重大な課題に直面している。
本稿では,全ブラウザで動作するローカルな大規模言語モデル(LLM)によるゼロショット推論を利用した,包括的URL解析のための新しいクライアントサイドフレームワークを提案する。
本システムでは,静的コード解析(JavaScript抽象構文木,構造,コードパターン),動的サンドボックス実行結果(DOM変更,API呼び出し,ネットワーク要求),可視コンテンツなど,WebLLMによるコンパクトLLM(例:3B/8Bパラメータ)を用いて,対象Webページから収集したリッチなコンテキストに対する推論を行う。
実際のブラウザサンドボックス(iframeを使用)が一般的なアンチアナリシス技術に耐性を持つシステムアーキテクチャと方法論と、潜在的な脆弱性や悪意のある振る舞いをタスク固有のトレーニング(ゼロショット)なしで評価するLLMベースのアナライザを組み合わせる。
LLMは、複数のソース(コード、実行トレース、ページコンテンツ)から証拠を集約し、URLを良性または悪意として分類し、特定された脅威またはセキュリティ問題の説明を提供する。
当社のアプローチは、さまざまな良質で悪意のあるURLに対して評価され、コンパクトなクライアントサイドモデルであっても、エンドユーザデバイス上でプライベートに運用しながら、クラウドベースのソリューションに匹敵する高い検出精度と洞察力のある説明を実現できることが実証された。
その結果、クライアント側LCM推論はWeb脅威分析の実用的で効果的なソリューションであり、クラウドサービスに潜在的に敏感なデータを送信する必要がなくなることがわかった。
関連論文リスト
- The Hidden Dangers of Browsing AI Agents [0.0]
本稿では,複数のアーキテクチャ層にまたがるシステム的脆弱性に着目し,このようなエージェントの総合的なセキュリティ評価を行う。
本研究は,ブラウジングエージェントのエンド・ツー・エンドの脅威モデルについて概説し,実環境への展開を確保するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2025-05-19T13:10:29Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジィングフレームワークであるAgentXploitを提案する。
我々は、AgentXploitをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
我々は、MLLMから特定のマルチモーダル知識を削除する方法を評価するために、マルチモーダル・アンラーニング・ベンチマークUnLOK-VQAとアタック・アンド・ディフェンス・フレームワークを導入する。
その結果,マルチモーダル攻撃はテキストや画像のみの攻撃よりも優れており,最も効果的な防御は内部モデル状態から解答情報を除去することを示した。
論文 参考訳(メタデータ) (2025-05-01T01:54:00Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
大規模言語モデル(LLM)ルーティングは,計算コストと性能のバランスをとる上で重要な戦略である。
DSCベンチマークを提案する: Diverse, Simple, and Categorizedは、幅広いクエリタイプでルータのパフォーマンスを分類する評価フレームワークである。
論文 参考訳(メタデータ) (2025-03-20T19:52:30Z) - Efficient Phishing URL Detection Using Graph-based Machine Learning and Loopy Belief Propagation [12.89058029173131]
フィッシングURL検出のためのグラフベース機械学習モデルを提案する。
我々は、IPアドレスや権威名サーバのようなURL構造とネットワークレベルの機能を統合する。
実世界のデータセットの実験は、F1スコアを98.77%まで達成することで、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2025-01-12T19:49:00Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
本稿では,1次元畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2024-04-27T17:13:49Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - An Adversarial Attack Analysis on Malicious Advertisement URL Detection
Framework [22.259444589459513]
悪意のある広告URLは、サイバー攻撃の源泉であるため、セキュリティ上のリスクをもたらす。
既存の悪意のあるURL検出技術は制限されており、見えない機能やテストデータの一般化を扱うことができる。
本研究では,新しい語彙・ウェブスクラップ機能群を抽出し,機械学習技術を用いて不正広告URL検出システムを構築する。
論文 参考訳(メタデータ) (2022-04-27T20:06:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。