INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
- URL: http://arxiv.org/abs/2506.03660v2
- Date: Mon, 30 Jun 2025 13:33:45 GMT
- Title: INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
- Authors: Wei Luo, Haiming Yao, Yunkang Cao, Qiyu Chen, Ang Gao, Weiming Shen, Wenyong Yu,
- Abstract summary: Anomaly detection is essential for industrial inspection and medical diagnosis.<n>Existing methods typically rely on comparing'' test images to normal references from a training set.<n>We propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image.
- Score: 4.40689369060115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
Related papers
- Self-Navigated Residual Mamba for Universal Industrial Anomaly Detection [42.42739543127113]
Self-Navigated Residual Mamba (SNARM) is a novel framework for universal industrial anomaly detection.<n> SNARM iteratively refines anomaly detection by comparing test patches against adaptively selected in-image references.<n>Experiments on MVTec AD, MVTec 3D, and VisA benchmarks demonstrate that SNARM achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2025-08-03T05:07:38Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.<n>We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.<n>Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection [6.443312201906293]
INP-Former is a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image.<n>INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks.
arXiv Detail & Related papers (2025-03-04T09:10:32Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
A naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked.<n>One potential remedy is incorporating the pre-trained knowledge within the vision foundation models to expand the feature space.<n>By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD) aims to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without further training on the target data.
We introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL.
InCTRL is the best performer and significantly outperforms state-of-the-art competing methods.
arXiv Detail & Related papers (2024-03-11T08:07:46Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - Zero-Shot Anomaly Detection via Batch Normalization [58.291409630995744]
Anomaly detection plays a crucial role in many safety-critical application domains.
The challenge of adapting an anomaly detector to drift in the normal data distribution has led to the development of zero-shot AD techniques.
We propose a simple yet effective method called Adaptive Centered Representations (ACR) for zero-shot batch-level AD.
arXiv Detail & Related papers (2023-02-15T18:34:15Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z) - Modeling the Distribution of Normal Data in Pre-Trained Deep Features
for Anomaly Detection [2.9864637081333085]
Anomaly Detection (AD) in images refers to identifying images and image substructures that deviate significantly from the norm.
We show that deep feature representations learned by discriminative models on large natural image datasets are well suited to describe normality.
arXiv Detail & Related papers (2020-05-28T16:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.