Self-Navigated Residual Mamba for Universal Industrial Anomaly Detection
- URL: http://arxiv.org/abs/2508.01591v1
- Date: Sun, 03 Aug 2025 05:07:38 GMT
- Title: Self-Navigated Residual Mamba for Universal Industrial Anomaly Detection
- Authors: Hanxi Li, Jingqi Wu, Lin Yuanbo Wu, Mingliang Li, Deyin Liu, Jialie Shen, Chunhua Shen,
- Abstract summary: Self-Navigated Residual Mamba (SNARM) is a novel framework for universal industrial anomaly detection.<n> SNARM iteratively refines anomaly detection by comparing test patches against adaptively selected in-image references.<n>Experiments on MVTec AD, MVTec 3D, and VisA benchmarks demonstrate that SNARM achieves state-of-the-art (SOTA) performance.
- Score: 42.42739543127113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose Self-Navigated Residual Mamba (SNARM), a novel framework for universal industrial anomaly detection that leverages ``self-referential learning'' within test images to enhance anomaly discrimination. Unlike conventional methods that depend solely on pre-trained features from normal training data, SNARM dynamically refines anomaly detection by iteratively comparing test patches against adaptively selected in-image references. Specifically, we first compute the ``inter-residuals'' features by contrasting test image patches with the training feature bank. Patches exhibiting small-norm residuals (indicating high normality) are then utilized as self-generated reference patches to compute ``intra-residuals'', amplifying discriminative signals. These inter- and intra-residual features are concatenated and fed into a novel Mamba module with multiple heads, which are dynamically navigated by residual properties to focus on anomalous regions. Finally, AD results are obtained by aggregating the outputs of a self-navigated Mamba in an ensemble learning paradigm. Extensive experiments on MVTec AD, MVTec 3D, and VisA benchmarks demonstrate that SNARM achieves state-of-the-art (SOTA) performance, with notable improvements in all metrics, including Image-AUROC, Pixel-AURC, PRO, and AP.
Related papers
- INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning [4.40689369060115]
Anomaly detection is essential for industrial inspection and medical diagnosis.<n>Existing methods typically rely on comparing'' test images to normal references from a training set.<n>We propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image.
arXiv Detail & Related papers (2025-06-04T07:49:11Z) - DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection [10.834698906236405]
Out-of-distribution (OOD) detection is essential for ensuring the robustness of machine learning models.
Recent advances in multimodal models have demonstrated the potential of leveraging multiple modalities to enhance detection performance.
We propose Dynamic Prototype Updating (DPU), a novel plug-and-play framework for multimodal OOD detection.
arXiv Detail & Related papers (2024-11-12T22:43:16Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE enhances global feature representation of point cloud masked autoencoders by making them both discriminative and sensitive to transformations.<n>We propose a novel loss that explicitly penalizes invariant collapse, enabling the network to capture richer transformation cues while preserving discriminative representations.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance [0.562479170374811]
Per-IMage Overlap (PIMO) is a novel metric that addresses the shortcomings of AUROC and AUPRO.
measuring recall per image simplifies computation and is more robust to noisy annotations.
Our experiments demonstrate that PIMO offers practical advantages and nuanced performance insights.
arXiv Detail & Related papers (2024-01-03T21:24:44Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Generalizable Industrial Visual Anomaly Detection with Self-Induction
Vision Transformer [5.116033262865781]
We propose a self-induction vision Transformer (SIVT) for unsupervised generalizable industrial visual anomaly detection and localization.
The proposed SIVT first extracts discriminatory features from pre-trained CNN as property descriptors, then reconstructs the extracted features in a self-supervisory fashion.
The results reveal that the proposed method can advance state-of-the-art detection performance with an improvement of 2.8-6.3 in AUROC, and 3.3-7.6 in AP.
arXiv Detail & Related papers (2022-11-22T14:56:12Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.