Comprehensive Attribute Encoding and Dynamic LSTM HyperModels for Outcome Oriented Predictive Business Process Monitoring
- URL: http://arxiv.org/abs/2506.03696v1
- Date: Wed, 04 Jun 2025 08:27:58 GMT
- Title: Comprehensive Attribute Encoding and Dynamic LSTM HyperModels for Outcome Oriented Predictive Business Process Monitoring
- Authors: Fang Wang, Paolo Ceravolo, Ernesto Damiani,
- Abstract summary: Predictive Business Process Monitoring aims to forecast future outcomes of ongoing business processes.<n>Existing methods often lack flexibility to handle real-world challenges such as simultaneous events, class imbalance, and multi-level attributes.<n>We propose a suite of dynamic LSTM HyperModels that integrate two-level hierarchical encoding for event and sequence attributes.<n> specialized LSTM variants for simultaneous event modeling, leveraging multidimensional embeddings and time-difference flag augmentation.
- Score: 5.634923879819779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive Business Process Monitoring (PBPM) aims to forecast future outcomes of ongoing business processes. However, existing methods often lack flexibility to handle real-world challenges such as simultaneous events, class imbalance, and multi-level attributes. While prior work has explored static encoding schemes and fixed LSTM architectures, they struggle to support adaptive representations and generalize across heterogeneous datasets. To address these limitations, we propose a suite of dynamic LSTM HyperModels that integrate two-level hierarchical encoding for event and sequence attributes, character-based decomposition of event labels, and novel pseudo-embedding techniques for durations and attribute correlations. We further introduce specialized LSTM variants for simultaneous event modeling, leveraging multidimensional embeddings and time-difference flag augmentation. Experimental validation on four public and real-world datasets demonstrates up to 100% accuracy on balanced datasets and F1 scores exceeding 86\% on imbalanced ones. Our approach advances PBPM by offering modular and interpretable models better suited for deployment in complex settings. Beyond PBPM, it contributes to the broader AI community by improving temporal outcome prediction, supporting data heterogeneity, and promoting explainable process intelligence frameworks.
Related papers
- MEGA: xLSTM with Multihead Exponential Gated Fusion for Precise Aspect-based Sentiment Analysis [2.9045498954705886]
Aspect-based Sentiment Analysis (ABSA) is a critical Natural Language Processing (NLP) task that extracts aspects from text and determines their associated sentiments.<n>Existing ABSA methods struggle to balance computational efficiency with high performance.<n>We propose xLSTM with Multihead Exponential Gated Fusion (MEGA), a novel framework integrating a bi-directional mLSTM architecture with forward and partially flipped backward streams.
arXiv Detail & Related papers (2025-07-01T22:21:33Z) - MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - IDEAL: Data Equilibrium Adaptation for Multi-Capability Language Model Alignment [29.703775936837012]
Large Language Models (LLMs) have achieved impressive performance through Supervised Fine-tuning (SFT) on diverse instructional datasets.<n>When training on multiple capabilities simultaneously, the mixture training dataset, governed by volumes of data from different domains, is a critical factor that directly impacts the final model's performance.<n>We introduce an innovative data equilibrium framework designed to effectively optimize volumes of data from different domains within mixture SFT datasets.
arXiv Detail & Related papers (2025-05-19T06:42:44Z) - A Deep Learning Framework for Sequence Mining with Bidirectional LSTM and Multi-Scale Attention [11.999319439383918]
This paper addresses the challenges of mining latent patterns and modeling contextual dependencies in complex sequence data.<n>A sequence pattern mining algorithm is proposed by integrating Bidirectional Long Short-Term Memory (BiLSTM) with a multi-scale attention mechanism.<n>BiLSTM captures both forward and backward dependencies in sequences, enhancing the model's ability to perceive global contextual structures.
arXiv Detail & Related papers (2025-04-21T16:53:02Z) - Single Domain Generalization with Model-aware Parametric Batch-wise Mixup [22.709796153794507]
Single Domain Generalization remains a formidable challenge in the field of machine learning.<n>We propose a novel data augmentation approach, named as Model-aware Parametric Batch-wise Mixup.<n>By exploiting inter-feature correlations, the parameterized mixup generator introduces additional versatility in combining features across a batch of instances.
arXiv Detail & Related papers (2025-02-22T03:45:18Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.