A Retrieval-Augmented Multi-Agent Framework for Psychiatry Diagnosis
- URL: http://arxiv.org/abs/2506.03750v1
- Date: Wed, 04 Jun 2025 09:18:25 GMT
- Title: A Retrieval-Augmented Multi-Agent Framework for Psychiatry Diagnosis
- Authors: Mengxi Xiao, Mang Ye, Ben Liu, Xiaofen Zong, He Li, Jimin Huang, Qianqian Xie, Min Peng,
- Abstract summary: MoodAngels is the first specialized multi-agent framework for mood disorder diagnosis.<n>MoodSyn is an open-source dataset of 1,173 synthetic psychiatric cases.
- Score: 44.4032296111169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of AI in psychiatric diagnosis faces significant challenges, including the subjective nature of mental health assessments, symptom overlap across disorders, and privacy constraints limiting data availability. To address these issues, we present MoodAngels, the first specialized multi-agent framework for mood disorder diagnosis. Our approach combines granular-scale analysis of clinical assessments with a structured verification process, enabling more accurate interpretation of complex psychiatric data. Complementing this framework, we introduce MoodSyn, an open-source dataset of 1,173 synthetic psychiatric cases that preserves clinical validity while ensuring patient privacy. Experimental results demonstrate that MoodAngels outperforms conventional methods, with our baseline agent achieving 12.3% higher accuracy than GPT-4o on real-world cases, and our full multi-agent system delivering further improvements. Evaluation in the MoodSyn dataset demonstrates exceptional fidelity, accurately reproducing both the core statistical patterns and complex relationships present in the original data while maintaining strong utility for machine learning applications. Together, these contributions provide both an advanced diagnostic tool and a critical research resource for computational psychiatry, bridging important gaps in AI-assisted mental health assessment.
Related papers
- Unveiling the Landscape of Clinical Depression Assessment: From Behavioral Signatures to Psychiatric Reasoning [43.26860213892083]
Depression is a widespread mental disorder that affects millions worldwide.<n>Most studies rely on limited or non-clinically validated data, and often prioritize complex model design over real-world effectiveness.<n>We introduce C-MIND, a clinical neuropsychiatric multimodal diagnosis dataset collected over two years from real hospital visits.<n>Each participant completes three structured psychiatric tasks and receives a final diagnosis from expert clinicians, with informative audio, video, transcript, and functional near-infrared spectroscopy (fNIRS) signals recorded.
arXiv Detail & Related papers (2025-08-06T15:13:24Z) - Complex Dynamics in Psychological Data: Mapping Individual Symptom Trajectories to Group-Level Patterns [0.18749305679160366]
This study integrates causal inference, graph analysis, temporal complexity measures, and machine learning to examine whether individual symptom trajectories can reveal meaningful diagnostic patterns.<n> testing on a longitudinal dataset of N=45 individuals affected by General Anxiety Disorder (GAD) and/or Major Depressive Disorder (MDD) derived from Fisher et al.<n>New dataset yields 91% accuracy in the classification of the symptom dynamics, proving to be an effective diagnostic support tool.
arXiv Detail & Related papers (2025-07-07T16:38:37Z) - MAGI: Multi-Agent Guided Interview for Psychiatric Assessment [50.6150986786028]
We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational navigation.<n>We show that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
arXiv Detail & Related papers (2025-04-25T11:08:27Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.<n>Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.<n>Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Automated Multi-Label Annotation for Mental Health Illnesses Using Large Language Models [0.9913418444556487]
Mental health disorders, such as depression and Anxiety, often co-occur.<n>Social media datasets typically focus on single-disorder labels.<n>This paper proposes a novel methodology for cleaning, sampling, labeling, and combining data to create versatile multi-label datasets.
arXiv Detail & Related papers (2024-12-05T01:33:03Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
This paper introduces the Agent Mental Clinic (AMC), a self-improving conversational agent system designed to enhance depression diagnosis through simulated dialogues between patient and psychiatrist agents.
We design a psychiatrist agent consisting of a tertiary memory structure, a dialogue control and a memory sampling module, fully leveraging the skills reflected by the psychiatrist agent, achieving great accuracy on depression risk and suicide risk diagnosis via conversation.
arXiv Detail & Related papers (2024-09-20T14:25:08Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.