論文の概要: HUMOF: Human Motion Forecasting in Interactive Social Scenes
- arxiv url: http://arxiv.org/abs/2506.03753v2
- Date: Thu, 05 Jun 2025 05:26:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 14:14:43.186309
- Title: HUMOF: Human Motion Forecasting in Interactive Social Scenes
- Title(参考訳): HUMOF:対話型ソーシャルシーンにおける人間の動き予測
- Authors: Caiyi Sun, Yujing Sun, Xiao Han, Zemin Yang, Jiawei Liu, Xinge Zhu, Siu Ming Yiu, Yuexin Ma,
- Abstract要約: 複雑なシーンは、対話情報の豊富さによる人間の行動予測に重要な課題を示す。
対話型シーンにおける人間の動き予測に有効な手法を提案する。
提案手法は,4つの公開データセットにまたがる最先端性能を実現する。
- 参考スコア(独自算出の注目度): 29.621970821619424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex scenes present significant challenges for predicting human behaviour due to the abundance of interaction information, such as human-human and humanenvironment interactions. These factors complicate the analysis and understanding of human behaviour, thereby increasing the uncertainty in forecasting human motions. Existing motion prediction methods thus struggle in these complex scenarios. In this paper, we propose an effective method for human motion forecasting in interactive scenes. To achieve a comprehensive representation of interactions, we design a hierarchical interaction feature representation so that high-level features capture the overall context of the interactions, while low-level features focus on fine-grained details. Besides, we propose a coarse-to-fine interaction reasoning module that leverages both spatial and frequency perspectives to efficiently utilize hierarchical features, thereby enhancing the accuracy of motion predictions. Our method achieves state-of-the-art performance across four public datasets. Code will be released when this paper is published.
- Abstract(参考訳): 複雑な場面では、人間と人間との相互作用や人間環境の相互作用など、対話情報が豊富にあるため、人間の行動を予測する上で重要な課題が提示される。
これらの要因は人間の行動の分析と理解を複雑にし、それによって人間の動きを予測する不確実性を増大させる。
したがって、既存の動き予測手法はこれらの複雑なシナリオで苦労する。
本稿では,対話型シーンにおける人間の動き予測に有効な手法を提案する。
相互作用の包括的表現を実現するために,高レベルの特徴が相互作用の全体的コンテキストを捉え,低レベルの特徴が細かな詳細に集中するように階層的な相互作用特徴表現を設計する。
さらに,空間的視点と周波数的視点の両方を利用して階層的特徴を効率的に活用し,動き予測の精度を向上する粗粒間相互作用推論モジュールを提案する。
提案手法は,4つの公開データセットにまたがる最先端性能を実現する。
この論文が公開されたら、コードは公開される。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction [27.10256777126629]
本稿では,テキスト・インタラクション・ペア・データを直接学習することなく,人間と物体の相互作用を生成できる可能性を示す。
人間の行動が物体の動きにどのように影響するかをモデル化し、単純な物理を理解するために設計された世界モデルを導入する。
これらのコンポーネントを統合することで、新しいフレームワークであるInterDreamerは、ゼロショット方式でテキスト整列した3D HOIシーケンスを生成することができる。
論文 参考訳(メタデータ) (2024-03-28T17:59:30Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
我々は、リレーショナルインターベンション(THOR)を用いたテキスト誘導型ヒューマンオブジェクト相互作用拡散モデルを提案する。
各拡散段階において、テキスト誘導された人間と物体の動きを開始し、その後、人と物体の関係を利用して物体の動きに介入する。
テキスト記述をシームレスに統合するText2HOIデータセットであるText-BEHAVEを,現在最大規模で公開されている3D HOIデータセットに構築する。
論文 参考訳(メタデータ) (2024-03-17T13:17:25Z) - Inter-X: Towards Versatile Human-Human Interaction Analysis [100.254438708001]
正確な身体の動きと多様な相互作用パターンを持つデータセットであるInter-Xを提案する。
データセットは、1Kの相互作用シーケンスと8.1Mフレーム以上を含む。
また、Inter-Xには34K以上の微粒な人間のテキスト記述の多義アノテーションも備えています。
論文 参考訳(メタデータ) (2023-12-26T13:36:05Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
本稿では,3次元物体相互作用(HOI)の予測に向けた新しい課題について述べる。
我々のタスクは、様々な形状の動的物体をモデリングし、全身の動きを捉え、物理的に有効な相互作用を確実にする必要があるため、はるかに困難である。
複数の人-物間相互作用データセットを用いた実験は,本手法の有効性を実証し,現実的で,鮮明で,かつ,極めて長期にわたる3D HOI予測を生成できることを示した。
論文 参考訳(メタデータ) (2023-08-31T17:59:08Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - GIMO: Gaze-Informed Human Motion Prediction in Context [75.52839760700833]
本研究では、高品質なボディポーズシーケンス、シーンスキャン、目視によるエゴ中心のビューを提供する大規模な人体動作データセットを提案する。
私たちのデータ収集は特定のシーンに縛られません。
視線の全可能性を実現するために,視線と運動枝の双方向通信を可能にする新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-04-20T13:17:39Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。