論文の概要: Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning
- arxiv url: http://arxiv.org/abs/2506.03939v1
- Date: Wed, 04 Jun 2025 13:31:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.353331
- Title: Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning
- Title(参考訳): グラフカウンセラー:LLM推論の強化を目的としたマルチエージェントシナジーによる適応グラフ探索
- Authors: Junqi Gao, Xiang Zou, YIng Ai, Dong Li, Yichen Niu, Biqing Qi, Jianxing Liu,
- Abstract要約: GraphRAGは、知識関係を明示的にモデル化することで、外部知識統合機能を効果的に強化する。
既存の方法には2つの固有の制限がある。
マルチエージェント協調に基づくグラフRAG法であるGraph Counselorを提案する。
- 参考スコア(独自算出の注目度): 4.703280619961521
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
- Abstract(参考訳): Graph Retrieval Augmented Generation(GraphRAG)は、知識関係を明示的にモデル化することで、外部知識統合機能を効果的に強化し、特殊ドメインにおけるLarge Language Model(LLM)の事実精度と生成品質を向上させる。
しかし、既存の方法には2つの制約がある。
1)非効率な情報集約: 単一のエージェントと固定された反復パターンに依存しており、グラフデータ内の多レベルテキスト、構造、次数情報を適応的に取得することが困難である。
2) リギッド推論機構: 推論深度を動的に調整したり,正確な意味的補正を行なえない事前設定推論方式を用いる。
この制限を克服するため,マルチエージェント協調に基づくグラフRAG法であるGraph Counselorを提案する。
この手法では、アダプティブグラフ情報抽出モジュール(AGIEM)を用いて、計画、思考、実行エージェントが協調して複雑なグラフ構造を正確にモデル化し、情報抽出戦略を動的に調整し、多レベル依存モデリングと適応推論深さの課題に対処する。
さらに、複数のパースペクティブを持つ自己回帰(SR)モジュールは、自己回帰と後方推論機構を通じて推論結果の正確性と意味的整合性を改善する。
実験により、グラフカウンセラーは複数のグラフ推論タスクにおいて既存の手法よりも優れており、推論精度と一般化能力が高いことが示された。
私たちのコードはhttps://github.com/gjq100/Graph-Counselor.git.comから入手可能です。
関連論文リスト
- G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning [58.73279333365234]
合成グラフ理論タスクにおける強化学習(RL)はグラフ推論能力を著しく拡張することができる。
RL on ErdosでG1はグラフ推論の大幅な改善を実現し、微調整された3BモデルはQwen2.5-72B-Instruct(24倍)よりも優れています。
我々の研究は、グラフ理論上のRLでLLMを微調整することで、強力なグラフ推論器を構築するための効率的でスケーラブルな経路を提供する。
論文 参考訳(メタデータ) (2025-05-24T04:33:41Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Empowering GraphRAG with Knowledge Filtering and Integration [33.174985984667636]
グラフ検索強化生成(GraphRAG)は、外部グラフから構造化知識を統合することにより、大規模言語モデルの推論を強化する。
筆者らは,1)ノイズや無関係な情報を取得することは,性能を低下させる可能性があり,(2)外部知識への過剰依存は本質的な推論を抑制する。
本稿では,GraphRAG-Filtering と GraphRAG-Integration を組み合わせた GraphRAG-FI (Filtering and Integration) を提案する。
論文 参考訳(メタデータ) (2025-03-18T01:29:55Z) - Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
関連情報を検索するだけでなく、因果推論や説明可能性の提供も重要である。
本稿では,大きな知識グラフをフィルタして原因効果エッジを強調する新しいパイプラインを提案する。
医学的質問応答タスクの実験では、一貫した利得を示し、最大10%の絶対的な改善がある。
論文 参考訳(メタデータ) (2025-01-24T19:31:06Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
GraphAgent-Reasonerは、明示的で正確なグラフ推論のための微調整不要なフレームワークである。
分散グラフ計算理論にインスパイアされた我々のフレームワークは、グラフ問題を複数のエージェント間で分散される小さなノード中心のタスクに分解する。
本フレームワークは,Webページ重要度分析などの実世界のグラフ推論アプリケーションを扱う能力を示す。
論文 参考訳(メタデータ) (2024-10-07T15:34:14Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。