論文の概要: G-reasoner: Foundation Models for Unified Reasoning over Graph-structured Knowledge
- arxiv url: http://arxiv.org/abs/2509.24276v1
- Date: Mon, 29 Sep 2025 04:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.750244
- Title: G-reasoner: Foundation Models for Unified Reasoning over Graph-structured Knowledge
- Title(参考訳): G-reasoner:グラフ構造化知識に対する統一推論の基礎モデル
- Authors: Linhao Luo, Zicheng Zhao, Junnan Liu, Zhangchi Qiu, Junnan Dong, Serge Panev, Chen Gong, Thuy-Trang Vu, Gholamreza Haffari, Dinh Phung, Alan Wee-Chung Liew, Shirui Pan,
- Abstract要約: 大規模言語モデル(LLM)は複雑な推論において優れているが、静的かつ不完全なパラメトリック知識によって制限される。
最近のグラフ強化RAG (GraphRAG) は、このギャップを補足したグラフを構築し、LLMがそれらを推論できるようにする。
G-reasonerは、様々なグラフ構造化知識を推論するためにグラフと言語基盤モデルを統合した統合フレームワークである。
- 参考スコア(独自算出の注目度): 88.82814893945077
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) excel at complex reasoning but remain limited by static and incomplete parametric knowledge. Retrieval-augmented generation (RAG) mitigates this by incorporating external knowledge, yet existing RAGs struggle with knowledge-intensive tasks due to fragmented information and weak modeling of knowledge structure. Graphs offer a natural way to model relationships within knowledge, but LLMs are inherently unstructured and cannot effectively reason over graph-structured data. Recent graph-enhanced RAG (GraphRAG) attempts to bridge this gap by constructing tailored graphs and enabling LLMs to reason on them. However, these methods often depend on ad-hoc graph designs, heuristic search, or costly agent pipelines, which hinder scalability and generalization. To address these challenges, we present G-reasoner, a unified framework that integrates graph and language foundation models for reasoning over diverse graph-structured knowledge. Central to our approach is QuadGraph, a standardized four-layer abstraction that unifies heterogeneous knowledge sources into a common graph representation. Building on this, we introduce a 34M-parameter graph foundation model (GFM) that jointly captures graph topology and textual semantics, and is integrated with LLMs to enhance reasoning in downstream applications. To ensure scalability and efficiency, mixed-precision training and distributed message-passing are implemented to scale GFM with more GPUs. Extensive experiments on six benchmarks show that G-reasoner consistently outperforms state-of-the-art baselines, significantly enhances LLM reasoning, and achieves strong efficiency and cross-graph generalization.
- Abstract(参考訳): 大規模言語モデル(LLM)は複雑な推論において優れているが、静的かつ不完全なパラメトリック知識によって制限される。
Retrieval-augmented Generation (RAG)は、外部知識を取り入れることでこれを緩和するが、既存のRAGは、断片化された情報と知識構造の弱いモデリングのために、知識集約的なタスクに苦しむ。
グラフは知識内で関係をモデル化する自然な方法を提供するが、LLMは本質的に非構造化であり、グラフ構造化データに対して効果的に推論できない。
最近のグラフ強化RAG (GraphRAG) は、このギャップを補足したグラフを構築し、LLMがそれらを推論できるようにする。
しかし、これらの手法は、しばしばアドホックグラフの設計、ヒューリスティック検索、あるいはコストのかかるエージェントパイプラインに依存し、拡張性と一般化を妨げている。
これらの課題に対処するため、G-reasonerは、グラフ構造化知識の多様さを推論するためにグラフと言語基盤モデルを統合した統合フレームワークである。
このアプローチの中心は、異種知識ソースを共通のグラフ表現に統一する標準化された4層抽象化であるQuadGraphである。
これに基づいて, グラフトポロジとテキストセマンティクスを協調的にキャプチャする, 34Mパラメータグラフ基盤モデル(GFM)を導入し, 下流アプリケーションにおける推論を強化するためにLLMと統合されている。
スケーラビリティと効率性を確保するため、より多くのGPUでGFMをスケールするために、混合精度トレーニングと分散メッセージパッシングが実装されている。
6つのベンチマークの大規模な実験により、G-reasonerは最先端のベースラインを一貫して上回り、LLM推論を大幅に向上し、高い効率とクロスグラフの一般化を実現している。
関連論文リスト
- GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models [59.72897499248909]
本稿では,Large Language Models (LLM) を用いたエンドツーエンド学習のための新しいグラフ検索手法を提案する。
抽出したサブグラフでは, 構造的知識と意味的特徴をそれぞれ軟式トークンと言語化グラフで符号化し, LLMに注入する。
提案手法は、複雑な推論タスクに対する結合グラフ-LLM最適化の強みを検証し、最先端の性能を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-20T02:38:00Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning [4.703280619961521]
GraphRAGは、知識関係を明示的にモデル化することで、外部知識統合機能を効果的に強化する。
既存の方法には2つの固有の制限がある。
マルチエージェント協調に基づくグラフRAG法であるGraph Counselorを提案する。
論文 参考訳(メタデータ) (2025-06-04T13:31:21Z) - G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning [58.73279333365234]
合成グラフ理論タスクにおける強化学習(RL)はグラフ推論能力を著しく拡張することができる。
RL on ErdosでG1はグラフ推論の大幅な改善を実現し、微調整された3BモデルはQwen2.5-72B-Instruct(24倍)よりも優れています。
我々の研究は、グラフ理論上のRLでLLMを微調整することで、強力なグラフ推論器を構築するための効率的でスケーラブルな経路を提供する。
論文 参考訳(メタデータ) (2025-05-24T04:33:41Z) - Injecting Knowledge Graphs into Large Language Models [0.0]
我々は,大規模言語モデル内のグラフ埋め込みをトークンとして統合するエンコーディング技術を構築した。
我々のアプローチは、モデルに依存しず、リソース効率が良く、どのLLMとも互換性がある。
論文 参考訳(メタデータ) (2025-05-12T13:31:26Z) - A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。