Limitations of Quantum Hardware for Molecular Energy Estimation Using VQE
- URL: http://arxiv.org/abs/2506.03995v1
- Date: Wed, 04 Jun 2025 14:19:18 GMT
- Title: Limitations of Quantum Hardware for Molecular Energy Estimation Using VQE
- Authors: Abel Carreras, David Casanova, Román Orús,
- Abstract summary: Variational quantum eigensolvers (VQEs) are among the most promising quantum algorithms for solving electronic structure problems in quantum chemistry.<n>In this study, we investigate the capabilities and limitations of VQE algorithms implemented on current quantum hardware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum eigensolvers (VQEs) are among the most promising quantum algorithms for solving electronic structure problems in quantum chemistry, particularly during the Noisy Intermediate-Scale Quantum (NISQ) era. In this study, we investigate the capabilities and limitations of VQE algorithms implemented on current quantum hardware for determining molecular ground-state energies, focusing on the adaptive derivative-assembled pseudo-Trotter ansatz VQE (ADAPT-VQE). To address the significant computational challenges posed by molecular Hamiltonians, we explore various strategies to simplify the Hamiltonian, optimize the ansatz, and improve classical parameter optimization through modifications of the COBYLA optimizer. These enhancements are integrated into a tailored quantum computing implementation designed to minimize the circuit depth and computational cost. Using benzene as a benchmark system, we demonstrate the application of these optimizations on an IBM quantum computer. Despite these improvements, our results highlight the limitations imposed by current quantum hardware, particularly the impact of quantum noise on state preparation and energy measurement. The noise levels in today's devices prevent meaningful evaluations of molecular Hamiltonians with sufficient accuracy to produce reliable quantum chemical insights. Finally, we extrapolate the requirements for future quantum hardware to enable practical and scalable quantum chemistry calculations using VQE algorithms. This work provides a roadmap for advancing quantum algorithms and hardware toward achieving quantum advantage in molecular modeling.
Related papers
- Sequential Quantum Computing [41.94295877935867]
We propose and experimentally demonstrate sequential quantum computing (SQC), a paradigm that utilizes multiple or heterogeneous quantum processors.<n>SQC overcomes the limitations of each type of quantum computer by combining their complementary strengths.<n>These results highlight SQC as a powerful and versatile approach for addressing complex quantum optimization problems.
arXiv Detail & Related papers (2025-06-25T17:51:29Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - An Introduction to Variational Quantum Eigensolver Applied to Chemistry [0.0]
Variational Quantum Algorithms (VQAs) stand out as a feasible approach to demonstrating advantages over classical methods in the near term.<n>We present the application of quantum mechanics to the study of molecules, provide an introduction to the fundamentals of quantum computing, and explore the integration of these fields by employing the VQE in molecular simulations.
arXiv Detail & Related papers (2025-05-07T19:46:15Z) - Quantum Measurement for Quantum Chemistry on a Quantum Computer [0.0]
A critical component of any quantum algorithm is the measurement step, where the desired properties are extracted from a quantum computer.<n>This review focuses on recent advancements in quantum measurement techniques tailored for quantum chemistry.
arXiv Detail & Related papers (2025-01-24T23:06:32Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.