Sequential Quantum Computing
- URL: http://arxiv.org/abs/2506.20655v1
- Date: Wed, 25 Jun 2025 17:51:29 GMT
- Title: Sequential Quantum Computing
- Authors: Sebastián V. Romero, Alejandro Gomez Cadavid, Enrique Solano, Narendra N. Hegade,
- Abstract summary: We propose and experimentally demonstrate sequential quantum computing (SQC), a paradigm that utilizes multiple or heterogeneous quantum processors.<n>SQC overcomes the limitations of each type of quantum computer by combining their complementary strengths.<n>These results highlight SQC as a powerful and versatile approach for addressing complex quantum optimization problems.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and experimentally demonstrate sequential quantum computing (SQC), a paradigm that utilizes multiple homogeneous or heterogeneous quantum processors in hybrid classical-quantum workflows. In this manner, we are able to overcome the limitations of each type of quantum computer by combining their complementary strengths. Current quantum devices, including analog quantum annealers and digital quantum processors, offer distinct advantages, yet face significant practical constraints when individually used. SQC addresses this by efficient inter-processor transfer of information through bias fields. Consequently, measurement outcomes from one quantum processor are encoded in the initial-state preparation of the subsequent quantum computer. We experimentally validate SQC by solving a combinatorial optimization problem with interactions up to three-body terms. A D-Wave quantum annealer utilizing 678 qubits approximately solves the problem, and an IBM's 156-qubit digital quantum processor subsequently refines the obtained solutions. This is possible via the digital introduction of non-stoquastic counterdiabatic terms unavailable to the analog quantum annealer. The experiment shows a substantial reduction in computational resources and improvement in the quality of the solution compared to the standalone operations of the individual quantum processors. These results highlight SQC as a powerful and versatile approach for addressing complex combinatorial optimization problems, with potential applications in quantum simulation of many-body systems, quantum chemistry, among others.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
Variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage.<n>VQAs have been proposed for a multitude of tasks such as ground-state estimation.<n>There remain major challenges in its trainability and resource costs on quantum hardware.
arXiv Detail & Related papers (2025-03-20T17:17:58Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.<n>We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.<n>We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
Variational quantum algorithms exploit the features of superposition and entanglement to optimize a cost function efficiently.
We implement and demonstrate the numerical processes on the 5-qubit and 7-qubit quantum processors on the IBM Qiskit platform.
arXiv Detail & Related papers (2023-08-28T17:52:47Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor [0.0]
We study a QAOA-based quantum optimization algorithm by implementing the Variational Quantum Factoring (VQF) algorithm.
We demonstrate the impact of different noise sources on the performance of QAOA and reveal the coherent error caused by the residual ZZ-coupling between qubits.
arXiv Detail & Related papers (2020-12-14T18:58:30Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.