Crowd-SFT: Crowdsourcing for LLM Alignment
- URL: http://arxiv.org/abs/2506.04063v1
- Date: Wed, 04 Jun 2025 15:26:38 GMT
- Title: Crowd-SFT: Crowdsourcing for LLM Alignment
- Authors: Alex Sotiropoulos, Sulyab Thottungal Valapu, Linus Lei, Jared Coleman, Bhaskar Krishnamachari,
- Abstract summary: Large Language Models (LLMs) increasingly rely on Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)<n>We propose an open, crowd-sourced fine-tuning framework that enables broader feedback collection for SFT without extensive annotator training.<n>Our framework promotes incentive fairness via a point-based reward system correlated with Shapley values and guides model convergence through iterative model updates.
- Score: 4.648677931378919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) increasingly rely on Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) to align model responses with human preferences. While RLHF employs a reinforcement learning approach with a separate reward model, SFT uses human-curated datasets for supervised learning. Both approaches traditionally depend on small, vetted groups of annotators, making them costly, prone to bias, and limited in scalability. We propose an open, crowd-sourced fine-tuning framework that addresses these limitations by enabling broader feedback collection for SFT without extensive annotator training. Our framework promotes incentive fairness via a point-based reward system correlated with Shapley values and guides model convergence through iterative model updates. Our multi-model selection framework demonstrates up to a 55% reduction in target distance over single-model selection, enabling subsequent experiments that validate our point-based reward mechanism's close alignment with Shapley values (a well-established method for attributing individual contributions) thereby supporting fair and scalable participation.
Related papers
- UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality [52.49062565901046]
Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models with human values.<n>Existing approaches struggle to capture the multi-dimensional, distributional nuances of human preferences.<n>We introduce Utility-Conditioned Multi-Objective Alignment (UC-MOA), a novel framework that overcomes these limitations.
arXiv Detail & Related papers (2025-03-10T09:52:42Z) - Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling [87.17041933863041]
Reinforcement Learning from Human Feedback (RLHF) has achieved considerable success in aligning large language models (LLMs)<n>We introduce a $textbfR$esponse-$textbfc$onditioned $textbfB$radley-$textbfT$erry (Rc-BT) model that enhances the model's capability in length bias mitigating and length instruction following.<n>We also propose the Rc-RM and Rc-DPO algorithm to leverage the Rc-BT model for reward modeling and direct policy optimization
arXiv Detail & Related papers (2025-02-02T14:50:25Z) - Quantile Regression for Distributional Reward Models in RLHF [1.8130068086063336]
We introduce Quantile Reward Models (QRMs), a novel approach to reward modeling that learns a distribution over rewards instead of a single scalar value.
Our method uses quantile regression to estimate a full, potentially multimodal distribution over preferences, providing a more powerful and nuanced representation of preferences.
Our experimental results show that QRM outperforms comparable traditional point-estimate models on RewardBench.
arXiv Detail & Related papers (2024-09-16T10:54:04Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning [5.622065847054885]
Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices.<n>We introduce a novel method called textbfFedAA, which optimize client contributions via textbfAdaptive textbfAggregation to enhance model robustness against malicious clients.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.