Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints
- URL: http://arxiv.org/abs/2506.04171v1
- Date: Wed, 04 Jun 2025 17:12:37 GMT
- Title: Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints
- Authors: Utkarsh Utkarsh, Pengfei Cai, Alan Edelman, Rafael Gomez-Bombarelli, Christopher Vincent Rackauckas,
- Abstract summary: Deep generative models have recently been applied to physical systems governed by partial differential equations (PDEs)<n>Existing methods often rely on soft penalties or architectural biases that fail to guarantee hard constraints.<n>We propose Physics-Constrained Flow Matching, a zero-shot inference framework that enforces arbitrary nonlinear constraints in pretrained flow-based generative models.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models have recently been applied to physical systems governed by partial differential equations (PDEs), offering scalable simulation and uncertainty-aware inference. However, enforcing physical constraints, such as conservation laws (linear and nonlinear) and physical consistencies, remains challenging. Existing methods often rely on soft penalties or architectural biases that fail to guarantee hard constraints. In this work, we propose Physics-Constrained Flow Matching (PCFM), a zero-shot inference framework that enforces arbitrary nonlinear constraints in pretrained flow-based generative models. PCFM continuously guides the sampling process through physics-based corrections applied to intermediate solution states, while remaining aligned with the learned flow and satisfying physical constraints. Empirically, PCFM outperforms both unconstrained and constrained baselines on a range of PDEs, including those with shocks, discontinuities, and sharp features, while ensuring exact constraint satisfaction at the final solution. Our method provides a general framework for enforcing hard constraints in both scientific and general-purpose generative models, especially in applications where constraint satisfaction is essential.
Related papers
- Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation [21.321570407292263]
We propose Physics-Based Flow Matching, a generative framework that embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective.<n>We show that our approach yields up to an $8times$ more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy.
arXiv Detail & Related papers (2025-06-10T09:13:37Z) - Semi-Explicit Neural DAEs: Learning Long-Horizon Dynamical Systems with Algebraic Constraints [2.66269503676104]
We propose a method that explicitly enforces algebraic constraints by projecting each ODE step onto the constraint manifold.<n>PNODEs consistently outperform baselines across six benchmark problems achieving a mean constraint violation error below $10-10$.<n>These results show that constraint projection offers a simple strategy for learning physically consistent long-horizon dynamics.
arXiv Detail & Related papers (2025-05-26T20:31:15Z) - Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - Training-Free Constrained Generation With Stable Diffusion Models [45.138721047543214]
We propose a novel approach to integrate stable diffusion models with constrained optimization frameworks.<n>We demonstrate the effectiveness of this approach through material science experiments requiring adherence to precise morphometric properties.
arXiv Detail & Related papers (2025-02-08T16:11:17Z) - Calibrated Physics-Informed Uncertainty Quantification [16.985414812517252]
We introduce a model-agnostic, physics-informed conformal prediction framework.<n>This framework provides guaranteed uncertainty estimates without requiring labelled data.<n>We further validate our method on neural PDE models for plasma modelling and shot design in fusion reactors.
arXiv Detail & Related papers (2025-02-06T09:23:06Z) - Gradient-Free Generation for Hard-Constrained Systems [41.558608119074755]
Existing constrained generative models rely heavily on gradient information, which is often sparse or computationally expensive in some fields.<n>We introduce a novel framework for adapting pre-trained, unconstrained flow-matching models to satisfy constraints exactly in a zero-shot manner.
arXiv Detail & Related papers (2024-12-02T18:36:26Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - Physics-Informed Polynomial Chaos Expansions [7.5746822137722685]
This paper presents a novel methodology for the construction of physics-informed expansions (PCE)
A computationally efficient means for physically constrained PCE is proposed and compared to standard sparse PCE.
We show that the constrained PCEs can be easily applied for uncertainty through analytical post-processing.
arXiv Detail & Related papers (2023-09-04T16:16:34Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - The Franz-Parisi Criterion and Computational Trade-offs in High
Dimensional Statistics [73.1090889521313]
This paper aims to make a rigorous connection between the different low-degree and free-energy based approaches.
We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness.
Results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools.
arXiv Detail & Related papers (2022-05-19T17:39:29Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.