A Few Moments Please: Scalable Graphon Learning via Moment Matching
- URL: http://arxiv.org/abs/2506.04206v1
- Date: Wed, 04 Jun 2025 17:51:01 GMT
- Title: A Few Moments Please: Scalable Graphon Learning via Moment Matching
- Authors: Reza Ramezanpour, Victor M. Tenorio, Antonio G. Marques, Ashutosh Sabharwal, Santiago Segarra,
- Abstract summary: We propose a novel, scalable graphon estimator that directly recovers the graphon via moment matching.<n>We also introduce MomentMixup, a data augmentation technique that performs mixup in the moment space to enhance graphon-based learning.
- Score: 32.65958390286061
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graphons, as limit objects of dense graph sequences, play a central role in the statistical analysis of network data. However, existing graphon estimation methods often struggle with scalability to large networks and resolution-independent approximation, due to their reliance on estimating latent variables or costly metrics such as the Gromov-Wasserstein distance. In this work, we propose a novel, scalable graphon estimator that directly recovers the graphon via moment matching, leveraging implicit neural representations (INRs). Our approach avoids latent variable modeling by training an INR--mapping coordinates to graphon values--to match empirical subgraph counts (i.e., moments) from observed graphs. This direct estimation mechanism yields a polynomial-time solution and crucially sidesteps the combinatorial complexity of Gromov-Wasserstein optimization. Building on foundational results, we establish a theoretical guarantee: when the observed subgraph motifs sufficiently represent those of the true graphon (a condition met with sufficiently large or numerous graph samples), the estimated graphon achieves a provable upper bound in cut distance from the ground truth. Additionally, we introduce MomentMixup, a data augmentation technique that performs mixup in the moment space to enhance graphon-based learning. Our graphon estimation method achieves strong empirical performance--demonstrating high accuracy on small graphs and superior computational efficiency on large graphs--outperforming state-of-the-art scalable estimators in 75\% of benchmark settings and matching them in the remaining cases. Furthermore, MomentMixup demonstrated improved graph classification accuracy on the majority of our benchmarks.
Related papers
- Scalable Implicit Graphon Learning [25.015678499211404]
We propose a scalable method that combines implicit neural representations (INRs) and graph neural networks (GNNs) to estimate a graphon from observed graphs.<n>We evaluate SIGL in synthetic and real-world graphs, showing that it outperforms existing methods and scales effectively to larger graphs.
arXiv Detail & Related papers (2024-10-22T22:44:24Z) - Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
We introduce SparseDiff, a novel diffusion model based on the observation that almost all large graphs are sparse.
By selecting a subset of edges, SparseDiff effectively leverages sparse graph representations both during the noising process and within the denoising network.
Our model demonstrates state-of-the-art performance across multiple metrics on both small and large datasets.
arXiv Detail & Related papers (2023-11-03T16:50:26Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
We propose a graph learning framework that learns the relational dependencies as distributions over graphs.
We show that the proposed solution can be used as a stand-alone graph identification procedure as well as a graph learning component of an end-to-end forecasting architecture.
arXiv Detail & Related papers (2022-05-26T17:02:43Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily.
We propose a novel framework called textitgraphon autoencoder to build an interpretable and scalable graph generative model.
A linear graphon factorization model works as a decoder, leveraging the latent representations to reconstruct the induced graphons.
arXiv Detail & Related papers (2021-05-29T08:11:40Z) - Just SLaQ When You Approximate: Accurate Spectral Distances for
Web-Scale Graphs [6.72542623686684]
We propose SLaQ, an efficient and effective approximation technique for computing spectral distances between graphs with billions of nodes and edges.
We show that SLaQ outperforms existing methods, oftentimes by several orders of magnitude in approximation accuracy.
arXiv Detail & Related papers (2020-03-03T01:25:07Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
Graph convolutional networks (GCNs) are a widely used method for graph representation learning.
We investigate the power of GCNs to distinguish between different random graph models on the basis of the embeddings of their sample graphs.
arXiv Detail & Related papers (2020-02-13T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.