Diffusion Domain Teacher: Diffusion Guided Domain Adaptive Object Detector
- URL: http://arxiv.org/abs/2506.04211v1
- Date: Wed, 04 Jun 2025 17:56:46 GMT
- Title: Diffusion Domain Teacher: Diffusion Guided Domain Adaptive Object Detector
- Authors: Boyong He, Yuxiang Ji, Zhuoyue Tan, Liaoni Wu,
- Abstract summary: Diffusion-based generative models have shown remarkable abilities in generating high-quality and diverse images.<n>We train a detector with frozen-weight diffusion model on the source domain, then employ it as a teacher model to generate pseudo labels on the unlabeled target domain.<n>Our method achieves an average mAP improvement of 21.2% compared to the baseline on 6 datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detectors often suffer a decrease in performance due to the large domain gap between the training data (source domain) and real-world data (target domain). Diffusion-based generative models have shown remarkable abilities in generating high-quality and diverse images, suggesting their potential for extracting valuable feature from various domains. To effectively leverage the cross-domain feature representation of diffusion models, in this paper, we train a detector with frozen-weight diffusion model on the source domain, then employ it as a teacher model to generate pseudo labels on the unlabeled target domain, which are used to guide the supervised learning of the student model on the target domain. We refer to this approach as Diffusion Domain Teacher (DDT). By employing this straightforward yet potent framework, we significantly improve cross-domain object detection performance without compromising the inference speed. Our method achieves an average mAP improvement of 21.2% compared to the baseline on 6 datasets from three common cross-domain detection benchmarks (Cross-Camera, Syn2Real, Real2Artistic}, surpassing the current state-of-the-art (SOTA) methods by an average of 5.7% mAP. Furthermore, extensive experiments demonstrate that our method consistently brings improvements even in more powerful and complex models, highlighting broadly applicable and effective domain adaptation capability of our DDT. The code is available at https://github.com/heboyong/Diffusion-Domain-Teacher.
Related papers
- Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability [0.0]
Detectors often suffer from performance drop due to domain gap between training and testing data.<n>Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks.<n>We propose to tackle these problems by extracting intermediate features from a single-step diffusion process.
arXiv Detail & Related papers (2025-06-26T06:42:23Z) - Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection [0.0]
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios.<n>Recent diffusion models have demonstrated remarkable capabilities in diverse scene generation.<n>We propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models.
arXiv Detail & Related papers (2025-03-03T22:36:22Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDAR-based 3D Object Detection methods often do not generalize well to target domains outside the source (or training) data distribution.
We introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which leverages visual semantic cues from an image modality.
We also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features.
arXiv Detail & Related papers (2024-03-06T14:12:38Z) - Cross Domain Object Detection by Target-Perceived Dual Branch
Distillation [49.68119030818388]
Cross domain object detection is a realistic and challenging task in the wild.
We propose a novel Target-perceived Dual-branch Distillation (TDD) framework.
Our TDD significantly outperforms the state-of-the-art methods on all the benchmarks.
arXiv Detail & Related papers (2022-05-03T03:51:32Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks.
We present a novel and effective method to tackle this problem by using effective inter-domain and intra-domain semantic information propagation.
Our source code and pre-trained models will be released soon.
arXiv Detail & Related papers (2020-12-04T14:28:19Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area.
Recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations are not highly effective on the videos.
This paper proposes an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions.
arXiv Detail & Related papers (2020-07-31T03:48:41Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.