Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability
- URL: http://arxiv.org/abs/2506.21042v2
- Date: Sat, 28 Jun 2025 03:56:38 GMT
- Title: Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability
- Authors: Boyong He, Yuxiang Ji, Zhuoyue Tan, Liaoni Wu,
- Abstract summary: Detectors often suffer from performance drop due to domain gap between training and testing data.<n>Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks.<n>We propose to tackle these problems by extracting intermediate features from a single-step diffusion process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detectors often suffer from performance drop due to domain gap between training and testing data. Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks, but still struggle with large inference costs and have not yet fully leveraged the capabilities of diffusion models. We propose to tackle these problems by extracting intermediate features from a single-step diffusion process, improving feature collection and fusion to reduce inference time by 75% while enhancing performance on source domains (i.e., Fitness). Then, we construct an object-centered auxiliary branch by applying box-masked images with class prompts to extract robust and domain-invariant features that focus on object. We also apply consistency loss to align the auxiliary and ordinary branch, balancing fitness and generalization while preventing overfitting and improving performance on target domains (i.e., Generalization). Furthermore, within a unified framework, standard detectors are guided by diffusion detectors through feature-level and object-level alignment on source domains (for DG) and unlabeled target domains (for DA), thereby improving cross-domain detection performance (i.e., Transferability). Our method achieves competitive results on 3 DA benchmarks and 5 DG benchmarks. Additionally, experiments on COCO generalization benchmark demonstrate that our method maintains significant advantages and show remarkable efficiency in large domain shifts and low-data scenarios. Our work shows the superiority of applying diffusion models to domain generalized and adaptive detection tasks and offers valuable insights for visual perception tasks across diverse domains. The code is available at \href{https://github.com/heboyong/Fitness-Generalization-Transferability}.
Related papers
- Diffusion Domain Teacher: Diffusion Guided Domain Adaptive Object Detector [0.0]
Diffusion-based generative models have shown remarkable abilities in generating high-quality and diverse images.<n>We train a detector with frozen-weight diffusion model on the source domain, then employ it as a teacher model to generate pseudo labels on the unlabeled target domain.<n>Our method achieves an average mAP improvement of 21.2% compared to the baseline on 6 datasets.
arXiv Detail & Related papers (2025-06-04T17:56:46Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection [0.0]
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios.<n>Recent diffusion models have demonstrated remarkable capabilities in diverse scene generation.<n>We propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models.
arXiv Detail & Related papers (2025-03-03T22:36:22Z) - Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness of object detection models.
Existing UDA methods largely ignore the instantaneous data distribution during model learning, which could deteriorate the feature representation given large domain shift.
We propose a Self-Guided Adaptation (SGA) model, target at aligning feature representation and transferring object detection models across domains.
arXiv Detail & Related papers (2020-03-19T13:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.