Short-Term Power Demand Forecasting for Diverse Consumer Types to Enhance Grid Planning and Synchronisation
- URL: http://arxiv.org/abs/2506.04294v1
- Date: Wed, 04 Jun 2025 12:01:11 GMT
- Title: Short-Term Power Demand Forecasting for Diverse Consumer Types to Enhance Grid Planning and Synchronisation
- Authors: Asier Diaz-Iglesias, Xabier Belaunzaran, Ane M. Florez-Tapia,
- Abstract summary: This study addresses the need for precise forecasting by differentiating among industrial, commercial, and residential consumers.<n>A variety of AI and machine learning algorithms for Short-Term Load Forecasting (STLF) and Very Short-Term Load Forecasting (VSTLF) are explored and compared.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ensuring grid stability in the transition to renewable energy sources requires accurate power demand forecasting. This study addresses the need for precise forecasting by differentiating among industrial, commercial, and residential consumers through customer clusterisation, tailoring the forecasting models to capture the unique consumption patterns of each group. A feature selection process is done for each consumer type including temporal, socio-economic, and weather-related data obtained from the Copernicus Earth Observation (EO) program. A variety of AI and machine learning algorithms for Short-Term Load Forecasting (STLF) and Very Short-Term Load Forecasting (VSTLF) are explored and compared, determining the most effective approaches. With all that, the main contribution of this work are the new forecasting approaches proposed, which have demonstrated superior performance compared to simpler models, both for STLF and VSTLF, highlighting the importance of customized forecasting strategies for different consumer groups and demonstrating the impact of incorporating detailed weather data on forecasting accuracy. These advancements contribute to more reliable power demand predictions, thereby supporting grid stability.
Related papers
- Explainability-Driven Feature Engineering for Mid-Term Electricity Load Forecasting in ERCOT's SCENT Region [0.0]
This paper presents a comparative analysis of machine learning models, for forecasting system-wide electricity load up to one year in advance.<n>The paper places a focus on the use of a method called "Shapley Additive Explanations" (SHAP) to improve model explainability.
arXiv Detail & Related papers (2025-07-29T20:36:24Z) - Hourly Short Term Load Forecasting for Residential Buildings and Energy Communities [0.0]
We introduce persistence models, auto-regressive-based machine learning models, and more advanced deep learning models.<n>We observe a 15-30% increase in the prediction accuracy of the newly introduced hourly-based forecasting models over existing approaches.
arXiv Detail & Related papers (2025-01-31T15:49:09Z) - One Model to Forecast Them All and in Entity Distributions Bind Them [0.0]
Probabilistic forecasting in power systems often involves multi-entity datasets like households, feeders, and wind turbines.<n>Traditional approaches require training individual models for each entity, making them inefficient and hard to scale.<n>This study addresses this problem using GUIDE-VAE, a conditional variational autoencoder that allows entity-specific probabilistic forecasting using a single model.
arXiv Detail & Related papers (2025-01-26T12:14:09Z) - Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGE is a hybrid forecasting system that combines human and machine generated forecasts.<n>The system aggregates human and machine forecasts weighting both for propinquity and based on assessed skill.<n>We show that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data.
arXiv Detail & Related papers (2024-12-14T22:09:45Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter Data [3.0839245814393728]
We propose Local Interpretable Model-agnostic Rule-based Explanations for Forecasting (LIMREF) to explain global model forecasts.
Here, we evaluate the quality of the explanations produced by the LIMREF framework in terms of both qualitative and quantitative aspects.
arXiv Detail & Related papers (2022-02-15T22:35:11Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
Energy demand forecasting is an essential task performed within the energy industry to help balance supply with demand and maintain a stable load on the electricity grid.
As supply transitions towards less reliable renewable energy generation, smart meters will prove a vital component to aid these forecasting tasks.
However, smart meter take-up is low among privacy-conscious consumers that fear intrusion upon their fine-grained consumption data.
arXiv Detail & Related papers (2021-05-27T17:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.