ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding
- URL: http://arxiv.org/abs/2506.04353v1
- Date: Wed, 04 Jun 2025 18:11:59 GMT
- Title: ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding
- Authors: Ankit Pal, Jung-Oh Lee, Xiaoman Zhang, Malaikannan Sankarasubbu, Seunghyeon Roh, Won Jung Kim, Meesun Lee, Pranav Rajpurkar,
- Abstract summary: ReXVQA is the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology.<n>It comprises approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets.<n>We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B.
- Score: 3.5568372183159203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXVQA
Related papers
- Sequential Diagnosis with Language Models [21.22416732642907]
We introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging cases into stepwise diagnostic encounters.<n>Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed.<n>We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians.
arXiv Detail & Related papers (2025-06-27T17:27:26Z) - An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [58.78045864541539]
We introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM)<n>DeepRare generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning.<n>The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases.
arXiv Detail & Related papers (2025-06-25T13:42:26Z) - DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models [25.13622249539088]
DiagnosisArena is a benchmark designed to rigorously assess professional-level diagnostic competence.<n> DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties.<n>Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively.
arXiv Detail & Related papers (2025-05-20T09:14:53Z) - Multi-Modal Explainable Medical AI Assistant for Trustworthy Human-AI Collaboration [17.11245701879749]
Generalist Medical AI (GMAI) systems have demonstrated expert-level performance in biomedical perception tasks.<n>Here, we present XMedGPT, a clinician-centric, multi-modal AI assistant that integrates textual and visual interpretability.<n>We validate XMedGPT across four pillars: multi-modal interpretability, uncertainty quantification, and prognostic modeling, and rigorous benchmarking.
arXiv Detail & Related papers (2025-05-11T08:32:01Z) - Artificial Intelligence to Assess Dental Findings from Panoramic Radiographs -- A Multinational Study [3.8184255731311287]
We analyzed 6,669 dental panoramic radiographs (DPRs) from three data sets.<n>Performance metrics included sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC)<n>The AI system demonstrated comparable or superior performance to human readers.
arXiv Detail & Related papers (2025-02-14T16:34:21Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.<n>It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.<n>Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - CXR-LLAVA: a multimodal large language model for interpreting chest
X-ray images [3.0757789554622597]
This study aimed to develop an open-source multimodal large language model (CXR-LLAVA) for interpreting chest X-ray images (CXRs)
For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities.
The model's diagnostic performance for major pathological findings was evaluated, along with the acceptability of radiologic reports by human radiologists.
arXiv Detail & Related papers (2023-10-22T06:22:37Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Robustness of an Artificial Intelligence Solution for Diagnosis of
Normal Chest X-Rays [0.0]
This study evaluates the robustness of an AI solution for the diagnosis of normal chest X-rays (CXRs)
A total of 4,060 CXRs were sampled to represent a diverse dataset of NHS patients and care settings.
arXiv Detail & Related papers (2022-08-31T09:54:24Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.