Can we reconstruct a dysarthric voice with the large speech model Parler TTS?
- URL: http://arxiv.org/abs/2506.04397v1
- Date: Wed, 04 Jun 2025 19:23:44 GMT
- Title: Can we reconstruct a dysarthric voice with the large speech model Parler TTS?
- Authors: Ariadna Sanchez, Simon King,
- Abstract summary: We generate an approximation of a dysarthric speaker's voice prior to onset of their condition.<n>We investigate whether a state-of-the-art large speech model, Parler TTS, can generate intelligible speech while maintaining speaker identity.
- Score: 11.547937373256921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech disorders can make communication hard or even impossible for those who develop them. Personalised Text-to-Speech is an attractive option as a communication aid. We attempt voice reconstruction using a large speech model, with which we generate an approximation of a dysarthric speaker's voice prior to the onset of their condition. In particular, we investigate whether a state-of-the-art large speech model, Parler TTS, can generate intelligible speech while maintaining speaker identity. We curate a dataset and annotate it with relevant speaker and intelligibility information, and use this to fine-tune the model. Our results show that the model can indeed learn to generate from the distribution of this challenging data, but struggles to control intelligibility and to maintain consistent speaker identity. We propose future directions to improve controllability of this class of model, for the voice reconstruction task.
Related papers
- Adapting Foundation Speech Recognition Models to Impaired Speech: A Semantic Re-chaining Approach for Personalization of German Speech [0.562479170374811]
Speech impairments caused by conditions such as cerebral palsy or genetic disorders pose significant challenges for automatic speech recognition systems.<n>We propose a practical and lightweight pipeline to personalize ASR models, formalizing the selection of words and enriching a small, speech-impaired dataset with semantic coherence.<n>Our approach shows promising improvements in transcription quality, demonstrating the potential to reduce communication barriers for individuals with atypical speech patterns.
arXiv Detail & Related papers (2025-06-23T15:30:50Z) - Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
We propose a Transformer encoder-decoder architecture to conditionally discriminate between real and generated speech features.
We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset.
Our model achieves improvements over the baseline in terms of speech quality and speaker similarity.
arXiv Detail & Related papers (2024-08-28T16:30:41Z) - Controlling Whisper: Universal Acoustic Adversarial Attacks to Control Speech Foundation Models [3.1511847280063696]
Speech enabled foundation models can perform tasks other than automatic speech recognition using an appropriate prompt.
With the development of audio-prompted large language models there is the potential for even greater control options.
We demonstrate that with this greater flexibility the systems can be susceptible to model-control adversarial attacks.
arXiv Detail & Related papers (2024-07-05T13:04:31Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - uSee: Unified Speech Enhancement and Editing with Conditional Diffusion
Models [57.71199494492223]
We propose a Unified Speech Enhancement and Editing (uSee) model with conditional diffusion models to handle various tasks at the same time in a generative manner.
Our experiments show that our proposed uSee model can achieve superior performance in both speech denoising and dereverberation compared to other related generative speech enhancement models.
arXiv Detail & Related papers (2023-10-02T04:36:39Z) - SpeechX: Neural Codec Language Model as a Versatile Speech Transformer [57.82364057872905]
SpeechX is a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks.
Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise.
arXiv Detail & Related papers (2023-08-14T01:01:19Z) - ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations [12.20522794248598]
We propose a zero-shot voice conversion method using speech representations trained with self-supervised learning.
We develop a multi-task model to decompose a speech utterance into features such as linguistic content, speaker characteristics, and speaking style.
Next, we develop a synthesis model with pitch and duration predictors that can effectively reconstruct the speech signal from its representation.
arXiv Detail & Related papers (2023-02-16T08:10:41Z) - Synthesizing Personalized Non-speech Vocalization from Discrete Speech
Representations [3.0016140723286457]
We formulated non-speech vocalization (NSV) modeling as a text-to-speech task and verified its viability.
Specifically, we evaluated the phonetic expressivity of HUBERT speech units on NSVs and verified our model's ability to control over speaker timbre.
arXiv Detail & Related papers (2022-06-25T14:27:10Z) - Speaker Identity Preservation in Dysarthric Speech Reconstruction by
Adversarial Speaker Adaptation [59.41186714127256]
Dysarthric speech reconstruction (DSR) aims to improve the quality of dysarthric speech.
Speaker encoder (SE) optimized for speaker verification has been explored to control the speaker identity.
We propose a novel multi-task learning strategy, i.e., adversarial speaker adaptation (ASA)
arXiv Detail & Related papers (2022-02-18T08:59:36Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
We propose a VC system with explicit prosodic modelling and deep speaker embedding learning.
A prosody corrector takes in phoneme embeddings to infer typical phoneme duration and pitch values.
A conversion model takes phoneme embeddings and typical prosody features as inputs to generate the converted speech.
arXiv Detail & Related papers (2020-11-03T13:08:53Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.