Multiscale guidance of AlphaFold3 with heterogeneous cryo-EM data
- URL: http://arxiv.org/abs/2506.04490v1
- Date: Wed, 04 Jun 2025 22:16:27 GMT
- Title: Multiscale guidance of AlphaFold3 with heterogeneous cryo-EM data
- Authors: Rishwanth Raghu, Axel Levy, Gordon Wetzstein, Ellen D. Zhong,
- Abstract summary: cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for imaging near-native structural heterogeneity.<n>Here, we combine cryo-EM density maps with the rich sequence and biophysical priors learned by protein structure prediction models.<n>Our method, CryoBoltz, guides the sampling trajectory of a pretrained protein structure prediction model using both global and local structural constraints.
- Score: 33.562685684224995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein structure prediction models are now capable of generating accurate 3D structural hypotheses from sequence alone. However, they routinely fail to capture the conformational diversity of dynamic biomolecular complexes, often requiring heuristic MSA subsampling approaches for generating alternative states. In parallel, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for imaging near-native structural heterogeneity, but is challenged by arduous pipelines to go from raw experimental data to atomic models. Here, we bridge the gap between these modalities, combining cryo-EM density maps with the rich sequence and biophysical priors learned by protein structure prediction models. Our method, CryoBoltz, guides the sampling trajectory of a pretrained protein structure prediction model using both global and local structural constraints derived from density maps, driving predictions towards conformational states consistent with the experimental data. We demonstrate that this flexible yet powerful inference-time approach allows us to build atomic models into heterogeneous cryo-EM maps across a variety of dynamic biomolecular systems including transporters and antibodies.
Related papers
- CryoGS: Gaussian Splatting for Cryo-EM Homogeneous Reconstruction [55.2480439325792]
cryogenic electron microscopy (cryo-EM) facilitates the determination of macromolecular structures at near-atomic resolution.<n>The core computational task in single-particle cryo-EM is to reconstruct the 3D electrostatic potential of a molecule.<n>We introduce cryoGS, a GMM-based method that integrates Gaussian splatting with the physics of cryo-EM image formation.
arXiv Detail & Related papers (2025-08-06T23:24:43Z) - DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models [66.41802970528133]
Molecular structure elucidation from spectra is a foundational problem in chemistry.<n>Traditional methods rely heavily on expert interpretation and lack scalability.<n>We present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data.
arXiv Detail & Related papers (2025-07-09T13:57:20Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.<n>Deep generative models have shown promise in generating protein conformations as a more efficient alternative.<n>We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
We introduce DPLM-2, a multimodal protein foundation model that extends discrete diffusion protein language model (DPLM) to accommodate both sequences and structures.
DPLM-2 learns the joint distribution of sequence and structure, as well as their marginals and conditionals.
Empirical evaluation shows that DPLM-2 can simultaneously generate highly compatible amino acid sequences and their corresponding 3D structures.
arXiv Detail & Related papers (2024-10-17T17:20:24Z) - AlphaFolding: 4D Diffusion for Dynamic Protein Structure Prediction with Reference and Motion Guidance [18.90451943620277]
This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures.<n>Our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps.
arXiv Detail & Related papers (2024-08-22T14:12:50Z) - CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM [3.424647356090208]
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data.<n>Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM.
arXiv Detail & Related papers (2024-08-10T11:48:14Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
Deep generative modeling techniques have been employed to generate novel protein conformations.
We propose a force-guided SE(3) diffusion model, ConfDiff, for protein conformation generation.
arXiv Detail & Related papers (2024-03-21T02:44:08Z) - Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical
Coarse-graining SO(3)-Equivariant Autoencoders [1.8835495377767553]
Three-dimensional native states of natural proteins display recurring and hierarchical patterns.
Traditional graph-based modeling of protein structures is often limited to operate within a single fine-grained resolution.
We introduce Ophiuchus, an SO(3)-equivariant coarse-graining model that efficiently operates on all-atom protein structures.
arXiv Detail & Related papers (2023-10-04T01:01:11Z) - EigenFold: Generative Protein Structure Prediction with Diffusion Models [10.24107243529341]
EigenFold is a diffusion generative modeling framework for sampling a distribution of structures from a given protein sequence.
On recent CAMEO targets, EigenFold achieves a median TMScore of 0.84, while providing a more comprehensive picture of model uncertainty.
arXiv Detail & Related papers (2023-04-05T02:46:13Z) - Latent Space Diffusion Models of Cryo-EM Structures [6.968705314671148]
We train a diffusion model as an expressive, learnable prior in the cryoDRGN framework.
By learning an accurate model of the data distribution, our method unlocks tools in generative modeling, sampling, and distribution analysis.
arXiv Detail & Related papers (2022-11-25T15:17:10Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
We describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions.
We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
arXiv Detail & Related papers (2022-09-29T22:35:35Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
An important task in bioengineering is designing proteins with specific 3D structures and chemical properties which enable targeted functions.
We introduce a generative model of both protein structure and sequence that can operate at significantly larger scales than previous molecular generative modeling approaches.
arXiv Detail & Related papers (2022-05-26T16:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.