Neural MJD: Neural Non-Stationary Merton Jump Diffusion for Time Series Prediction
- URL: http://arxiv.org/abs/2506.04542v1
- Date: Thu, 05 Jun 2025 01:23:28 GMT
- Title: Neural MJD: Neural Non-Stationary Merton Jump Diffusion for Time Series Prediction
- Authors: Yuanpei Gao, Qi Yan, Yan Leng, Renjie Liao,
- Abstract summary: We introduce Neural MJD, a neural network based non-stationary Merton diffusion (MJD) model.<n>Our model explicitly formulates forecasting as a Poisson equation (SDE) simulation problem.<n>To enable tractable learning, we introduce a likelihood truncation mechanism that caps the number of jumps within small time intervals.
- Score: 13.819057582932214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning methods have achieved strong performance in time series prediction, their black-box nature and inability to explicitly model underlying stochastic processes often limit their generalization to non-stationary data, especially in the presence of abrupt changes. In this work, we introduce Neural MJD, a neural network based non-stationary Merton jump diffusion (MJD) model. Our model explicitly formulates forecasting as a stochastic differential equation (SDE) simulation problem, combining a time-inhomogeneous It\^o diffusion to capture non-stationary stochastic dynamics with a time-inhomogeneous compound Poisson process to model abrupt jumps. To enable tractable learning, we introduce a likelihood truncation mechanism that caps the number of jumps within small time intervals and provide a theoretical error bound for this approximation. Additionally, we propose an Euler-Maruyama with restart solver, which achieves a provably lower error bound in estimating expected states and reduced variance compared to the standard solver. Experiments on both synthetic and real-world datasets demonstrate that Neural MJD consistently outperforms state-of-the-art deep learning and statistical learning methods.
Related papers
- A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models [0.0]
We introduce a neural-network-based approximation of the posterior distribution framework.<n>Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations.<n>On synthetic SPNs with 20% missing events, our surrogate recovers rate-function coefficients with an RMSE = 0.108 and substantially runs faster than traditional Bayesian approaches.
arXiv Detail & Related papers (2025-07-14T18:31:19Z) - Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.<n>Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.<n> Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Improving the Noise Estimation of Latent Neural Stochastic Differential Equations [4.64982780843177]
Latent neural differential equations (SDEs) have recently emerged as a promising approach for learning generative models from time series data.<n>We investigate this underestimation in detail and propose a straightforward solution: by including an explicit additional noise regularization in the loss function.<n>We are able to learn a model that accurately captures the diffusion component of the data.
arXiv Detail & Related papers (2024-12-23T11:56:35Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time.
We show that our model converges to the $L2$-optimal online prediction.
We experimentally show that our model outperforms the baselines in more complex learning tasks.
arXiv Detail & Related papers (2020-06-08T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.