Non-linear Multi-objective Optimization with Probabilistic Branch and Bound
- URL: http://arxiv.org/abs/2506.04554v1
- Date: Thu, 05 Jun 2025 02:01:08 GMT
- Title: Non-linear Multi-objective Optimization with Probabilistic Branch and Bound
- Authors: Hao Huang, Zelda B. Zabinsky,
- Abstract summary: A multiple objective simulation optimization algorithm named Multiple Objective Probabilistic Branch and Bound with Single Observation (MOPBnB(so)) is presented.<n>Results reveal that the variant with multiple replications is extremely intensive in terms of computational resources compared to MOPBnB(so)<n>In addition, numerical results show that MOPBnB(so) outperforms a genetic algorithm NSGA-II on test problems.
- Score: 6.305913808037513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A multiple objective simulation optimization algorithm named Multiple Objective Probabilistic Branch and Bound with Single Observation (MOPBnB(so)) is presented for approximating the Pareto optimal set and the associated efficient frontier for stochastic multi-objective optimization problems. MOPBnB(so) evaluates a noisy function exactly once at any solution and uses neighboring solutions to estimate the objective functions, in contrast to a variant that uses multiple replications at a solution to estimate the objective functions. A finite-time performance analysis for deterministic multi-objective problems provides a bound on the probability that MOPBnB(so) captures the Pareto optimal set. Asymptotic convergence of MOPBnB(so) on stochastic problems is derived, in that the algorithm captures the Pareto optimal set and the estimations converge to the true objective function values. Numerical results reveal that the variant with multiple replications is extremely intensive in terms of computational resources compared to MOPBnB(so). In addition, numerical results show that MOPBnB(so) outperforms a genetic algorithm NSGA-II on test problems.
Related papers
- Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.<n>The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models [17.19004913553654]
Multi-objective Bayesian optimization (MOBO) has shown promising performance on various expensive multi-objective optimization problems (EMOPs)
We propose a novel Composite Diffusion Model based Pareto Set Learning algorithm, namely CDM-PSL, for expensive MOBO.
Our proposed algorithm attains superior performance compared with various state-of-the-art MOBO algorithms.
arXiv Detail & Related papers (2024-05-14T14:55:57Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method [0.0]
This article focuses on the multi-objective optimization of simulators with high output variance.
We rely on Bayesian optimization algorithms to make predictions about the functions to be optimized.
arXiv Detail & Related papers (2022-07-08T11:51:48Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - R-MBO: A Multi-surrogate Approach for Preference Incorporation in
Multi-objective Bayesian Optimisation [0.0]
We present an a-priori multi-surrogate approach to incorporate the desirable objective function values as the preferences of a decision-maker in multi-objective BO.
The results and comparison with the existing mono-surrogate approach on benchmark and real-world optimisation problems show the potential of the proposed approach.
arXiv Detail & Related papers (2022-04-27T19:58:26Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
We study the scenario of components that are independent and normally distributed.
We introduce a multi-objective formulation of the problem which trades off the expected cost and its variance.
We prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.
arXiv Detail & Related papers (2021-09-13T09:24:23Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms [11.807734722701786]
Here the constraint involves components and the constraint can only be violated with a small probability of alpha.
We show that the algorithm GSEMO obtains the same worst case performance guarantees for monotone submodular functions.
Our experimental results show that the use of evolutionary multi-objective algorithms leads to significant performance improvements.
arXiv Detail & Related papers (2020-06-20T00:17:44Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.