SUCEA: Reasoning-Intensive Retrieval for Adversarial Fact-checking through Claim Decomposition and Editing
- URL: http://arxiv.org/abs/2506.04583v1
- Date: Thu, 05 Jun 2025 02:58:15 GMT
- Title: SUCEA: Reasoning-Intensive Retrieval for Adversarial Fact-checking through Claim Decomposition and Editing
- Authors: Hongjun Liu, Yilun Zhao, Arman Cohan, Chen Zhao,
- Abstract summary: adversarial claims are intentionally designed by humans to challenge fact-checking systems.<n>We propose a training-free method designed to rephrase the original claim, making it easier to locate supporting evidence.<n>Our framework significantly improves on both retrieval and entailment label accuracy, outperforming four strong claim-decomposition-based baselines.
- Score: 30.84752573088322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic fact-checking has recently received more attention as a means of combating misinformation. Despite significant advancements, fact-checking systems based on retrieval-augmented language models still struggle to tackle adversarial claims, which are intentionally designed by humans to challenge fact-checking systems. To address these challenges, we propose a training-free method designed to rephrase the original claim, making it easier to locate supporting evidence. Our modular framework, SUCEA, decomposes the task into three steps: 1) Claim Segmentation and Decontextualization that segments adversarial claims into independent sub-claims; 2) Iterative Evidence Retrieval and Claim Editing that iteratively retrieves evidence and edits the subclaim based on the retrieved evidence; 3) Evidence Aggregation and Label Prediction that aggregates all retrieved evidence and predicts the entailment label. Experiments on two challenging fact-checking datasets demonstrate that our framework significantly improves on both retrieval and entailment label accuracy, outperforming four strong claim-decomposition-based baselines.
Related papers
- Fact in Fragments: Deconstructing Complex Claims via LLM-based Atomic Fact Extraction and Verification [18.20994425756688]
Atomic Fact Extraction and Verification (AFEV) is a novel framework that iteratively decomposes complex claims into atomic facts.<n>AFEV achieves state-of-the-art performance in both accuracy and interpretability.
arXiv Detail & Related papers (2025-06-09T05:49:43Z) - CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs [15.170312674645535]
CRAVE is a Conflicting Reasoning Approach for explainable claim VErification.<n>It can verify complex claims based on the conflicting rationales reasoned by large language models.<n>CRAVE achieves much better performance than state-of-the-art methods.
arXiv Detail & Related papers (2025-04-21T07:20:31Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators [38.523194864405326]
AFaCTA is a novel framework that assists in the annotation of factual claims.
AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths.
Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
arXiv Detail & Related papers (2024-02-16T20:59:57Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia.
In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim.
We show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
arXiv Detail & Related papers (2023-03-02T17:45:32Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z) - Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification [5.836068916903788]
Hierarchical Evidence Set Modeling (HESM) is a framework to extract evidence sets and verify a claim to be supported, refuted or not enough info.
Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification.
arXiv Detail & Related papers (2020-10-10T22:27:17Z) - DeSePtion: Dual Sequence Prediction and Adversarial Examples for
Improved Fact-Checking [46.13738685855884]
We show that current systems for fact-checking are vulnerable to three categories of realistic challenges for fact-checking.
We present a system designed to be resilient to these "attacks" using multiple pointer networks for document selection.
We find that in handling these attacks we obtain state-of-the-art results on FEVER, largely due to improved evidence retrieval.
arXiv Detail & Related papers (2020-04-27T15:18:49Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.