Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective
- URL: http://arxiv.org/abs/2506.14965v1
- Date: Tue, 17 Jun 2025 20:24:00 GMT
- Title: Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective
- Authors: Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo Dey, Yuheng Zha, Yi Gu, Kun Zhou, Yuqi Wang, Yuan Li, Richard Fan, Jianshu She, Chengqian Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin, Zhengzhong Liu, Eric P. Xing, Zhiting Hu,
- Abstract summary: Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning.<n>A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains.<n>We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains.
- Score: 82.24301452333577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning, yet most open efforts focus narrowly on math and code, limiting our understanding of its broader applicability to general reasoning. A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains. We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains--Math, Code, Science, Logic, Simulation, and Tabular--each built through domain-specific reward design, deduplication, and filtering to ensure reliability and effectiveness for RL training. Based on Guru, we systematically revisit established findings in RL for LLM reasoning and observe significant variation across domains. For example, while prior work suggests that RL primarily elicits existing knowledge from pretrained models, our results reveal a more nuanced pattern: domains frequently seen during pretraining (Math, Code, Science) easily benefit from cross-domain RL training, while domains with limited pretraining exposure (Logic, Simulation, and Tabular) require in-domain training to achieve meaningful performance gains, suggesting that RL is likely to facilitate genuine skill acquisition. Finally, we present Guru-7B and Guru-32B, two models that achieve state-of-the-art performance among open models RL-trained with publicly available data, outperforming best baselines by 7.9% and 6.7% on our 17-task evaluation suite across six reasoning domains. We also show that our models effectively improve the Pass@k performance of their base models, particularly on complex tasks less likely to appear in pretraining data. We release data, models, training and evaluation code to facilitate general-purpose reasoning at: https://github.com/LLM360/Reasoning360
Related papers
- Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models [89.37819814048288]
We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy, and a diverse suite of tasks.<n>Our empirical analysis reveals that RL-trained models consistently outperform base resetting models across a wide range of pass@k evaluations.<n>These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models.
arXiv Detail & Related papers (2025-05-30T17:59:01Z) - RAST: Reasoning Activation in LLMs via Small-model Transfer [33.32587030836428]
Reinforcement learning (RL) has become a powerful approach for improving the reasoning capabilities of large language models (LLMs)<n>Applying RL at scale remains intimidatingly resource-intensive, requiring multiple model copies and extensive GPU workloads.<n>We propose RAST, a simple yet effective method that transfers reasoning behaviors by injecting RL-induced probability adjustments from a small RL-trained model into larger models.
arXiv Detail & Related papers (2025-05-30T17:57:08Z) - SeRL: Self-Play Reinforcement Learning for Large Language Models with Limited Data [65.56911325914582]
We propose Self-play Reinforcement Learning (SeRL) to bootstrap Large Language Models (LLMs) training with limited initial data.<n>The proposed SeRL yields results superior to its counterparts and achieves performance on par with those obtained by high-quality data with verifiable rewards.
arXiv Detail & Related papers (2025-05-25T13:28:04Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.