No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
- URL: http://arxiv.org/abs/2506.17219v2
- Date: Wed, 25 Jun 2025 13:27:49 GMT
- Title: No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
- Authors: Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang, Shuxin Zheng, Jiyan He,
- Abstract summary: Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning.<n>We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards.
- Score: 12.881043910316787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
Related papers
- Post-Training Large Language Models via Reinforcement Learning from Self-Feedback [3.73824942136665]
Large Language Models (LLMs) often produce plausible but poorly-calibrated answers.<n>We present Reinforcement Learning from Self-Feedback (RLSF), a post-training stage that uses the model's own confidence as an intrinsic reward.
arXiv Detail & Related papers (2025-07-29T15:46:26Z) - MeRF: Motivation-enhanced Reinforcement Finetuning for Large Reasoning Models [95.6332110724999]
Motivation-enhanced Reinforcement Finetuning (MeRF) is an intuitive yet effective method enhancing reinforcement learning of Large Language Models (LLMs)<n>MeRF directly injects the reward specification into the prompt, which serves as an in-context motivation for model to improve its responses with awareness of the optimization objective.<n> Empirical evaluations on the Knights and Knaves(K&K) logic puzzle reasoning benchmark demonstrate that textttMeRF achieves substantial performance gains over baselines.
arXiv Detail & Related papers (2025-06-23T10:37:57Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning [55.36978389831446]
We recast reflective exploration within the Bayes-Adaptive RL framework.<n>Our resulting algorithm, BARL, instructs the LLM to stitch and switch strategies based on observed outcomes.
arXiv Detail & Related papers (2025-05-26T22:51:00Z) - Bridging Supervised Learning and Reinforcement Learning in Math Reasoning [55.889740979706815]
Reinforcement Learning (RL) has played a central role in the recent surge of math abilities by enabling self-improvement through binary verifier signals.<n>In this work, we propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers.
arXiv Detail & Related papers (2025-05-23T17:17:40Z) - RL in Name Only? Analyzing the Structural Assumptions in RL post-training for LLMs [14.78605805191225]
Reinforcement learning-based post-training of large language models (LLMs) has recently gained attention.<n>We critically examine the formulation and assumptions underlying these methods.
arXiv Detail & Related papers (2025-05-19T19:57:15Z) - Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? [67.30809748319486]
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs)<n>This study critically examines the current state of RLVR.<n>We find that the current training setup does not elicit fundamentally new reasoning patterns.
arXiv Detail & Related papers (2025-04-18T17:59:56Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse Reinforcement Learning [6.691759477350243]
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque.<n>This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions.<n>We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 85% accuracy in predicting human preferences.
arXiv Detail & Related papers (2024-10-16T12:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.