論文の概要: From Developer Pairs to AI Copilots: A Comparative Study on Knowledge Transfer
- arxiv url: http://arxiv.org/abs/2506.04785v1
- Date: Thu, 05 Jun 2025 09:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.622458
- Title: From Developer Pairs to AI Copilots: A Comparative Study on Knowledge Transfer
- Title(参考訳): 開発者ペアからAIコパイロットへ:知識伝達の比較研究
- Authors: Alisa Welter, Niklas Schneider, Tobias Dick, Kallistos Weis, Christof Tinnes, Marvin Wyrich, Sven Apel,
- Abstract要約: AIコーディングアシスタントの台頭により、開発者は人間のパートナーだけでなく、AIペアプログラマーとも仕事をするようになる。
人・人・AI設定の知識伝達を解析するために,実験的検討を行った。
同様の頻度で知識伝達が成功し、両方の設定で話題カテゴリーが重複していることがわかりました。
- 参考スコア(独自算出の注目度): 8.567835367628787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge transfer is fundamental to human collaboration and is therefore common in software engineering. Pair programming is a prominent instance. With the rise of AI coding assistants, developers now not only work with human partners but also, as some claim, with AI pair programmers. Although studies confirm knowledge transfer during human pair programming, its effectiveness with AI coding assistants remains uncertain. To analyze knowledge transfer in both human-human and human-AI settings, we conducted an empirical study where developer pairs solved a programming task without AI support, while a separate group of individual developers completed the same task using the AI coding assistant GitHub Copilot. We extended an existing knowledge transfer framework and employed a semi-automated evaluation pipeline to assess differences in knowledge transfer episodes across both settings. We found a similar frequency of successful knowledge transfer episodes and overlapping topical categories across both settings. Two of our key findings are that developers tend to accept GitHub Copilot's suggestions with less scrutiny than those from human pair programming partners, but also that GitHub Copilot can subtly remind developers of important code details they might otherwise overlook.
- Abstract(参考訳): 知識伝達は人間のコラボレーションの基本であり、そのためソフトウェア工学では一般的である。
ペアプログラミングは顕著な例です。
AIコーディングアシスタントの台頭により、開発者は人間のパートナーだけでなく、AIペアプログラマーとも仕事をするようになる。
人間のペアプログラミングにおける知識伝達は研究によって確認されているが、AI符号化アシスタントの有効性は未だ不明である。
人間と人の両方のAI設定における知識伝達を分析するために、開発者ペアがAIサポートなしでプログラミングタスクを解決し、個々の開発者のグループがAIコーディングアシスタントであるGitHub Copilotを使用して同じタスクを完了した経験的な研究を行った。
既存の知識伝達フレームワークを拡張し、半自動評価パイプラインを用いて、知識伝達エピソードの違いを両設定で評価した。
同様の頻度の知識伝達が成功し、両方の設定でトピックのカテゴリが重複していることがわかりました。
重要な発見の2つとして、GitHub Copilotの提案を、人間のペアプログラミングパートナよりも精査の少ない形で受け入れる傾向がありますが、同時に、GitHub Copilotは、開発者が見落としている可能性のある重要なコード詳細を微妙に思い出すことができます。
関連論文リスト
- Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
本研究は,AIアシスタントがソフトウェア保守性に与える影響を検討することを目的とする。
フェーズ1では、開発者はAIアシスタントの助けなしに、Javaプロジェクトに新しい機能を追加する。
ランダム化されたコントロールされた試行のフェーズ2では、さまざまな開発者がランダムフェーズ1プロジェクトを進化させ、AIアシスタントなしで作業する。
論文 参考訳(メタデータ) (2024-08-20T11:48:42Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同じような方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenHandsを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - Rethinking Software Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers [30.996760992473064]
我々は,人間開発者と協調する目標駆動型AI駆動ペアプログラマへのパラダイムシフトを提案する。
目標駆動、人間パートナー、SE認識、自己学習のAIペアプログラマを想定する。
論文 参考訳(メタデータ) (2024-04-16T02:10:20Z) - Generative AI for Pull Request Descriptions: Adoption, Impact, and
Developer Interventions [11.620351603683496]
GitHubのCopilot for Pull Requests (PR)は、PRに関連するさまざまな開発者タスクを自動化することを目的とした有望なサービスである。
本研究では,生成AIによって記述の一部が作成された18,256個のPRについて検討した。
われわれは、Copilot for PRは幼少期ではあるが、採用が著しく増加していることを示唆している。
論文 参考訳(メタデータ) (2024-02-14T06:20:57Z) - HoloAssist: an Egocentric Human Interaction Dataset for Interactive AI
Assistants in the Real World [48.90399899928823]
この研究は、物理的な世界でのタスクを実行することで人間を対話的に導くインテリジェントエージェントを開発するための、より広範な研究努力の一環である。
大規模なエゴセントリックなヒューマンインタラクションデータセットであるHoloAssistを紹介する。
人間のアシスタントがミスを正し、タスク完了手順に介入し、環境に指示を下す方法について、重要な知見を提示する。
論文 参考訳(メタデータ) (2023-09-29T07:17:43Z) - Is AI the better programming partner? Human-Human Pair Programming vs.
Human-AI pAIr Programming [18.635201328291597]
我々は、人間とAIのペアプログラミングを比較し、その類似点と相互作用、測定、利益、課題の違いを探求する。
両手法の有効性は文献に混在していることが判明した。
pAIrプログラミング研究の機会を提供する人間対プログラミングの成功要因を要約する。
論文 参考訳(メタデータ) (2023-06-08T12:22:56Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。