Multi-scale Image Super Resolution with a Single Auto-Regressive Model
- URL: http://arxiv.org/abs/2506.04990v1
- Date: Thu, 05 Jun 2025 13:02:23 GMT
- Title: Multi-scale Image Super Resolution with a Single Auto-Regressive Model
- Authors: Enrique Sanchez, Isma Hadji, Adrian Bulat, Christos Tzelepis, Brais Martinez, Georgios Tzimiropoulos,
- Abstract summary: We tackle Image Super Resolution (ISR) using recent advances in Visual Auto-Regressive ( VAR) modeling.<n>To the best of our knowledge, this is the first time a quantizer is trained to force semantically consistent residuals at different scales.<n>Our model can denoise the LR image and super-resolve at half and full target upscale factors in a single forward pass.
- Score: 40.77470215283583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we tackle Image Super Resolution (ISR), using recent advances in Visual Auto-Regressive (VAR) modeling. VAR iteratively estimates the residual in latent space between gradually increasing image scales, a process referred to as next-scale prediction. Thus, the strong priors learned during pre-training align well with the downstream task (ISR). To our knowledge, only VARSR has exploited this synergy so far, showing promising results. However, due to the limitations of existing residual quantizers, VARSR works only at a fixed resolution, i.e. it fails to map intermediate outputs to the corresponding image scales. Additionally, it relies on a 1B transformer architecture (VAR-d24), and leverages a large-scale private dataset to achieve state-of-the-art results. We address these limitations through two novel components: a) a Hierarchical Image Tokenization approach with a multi-scale image tokenizer that progressively represents images at different scales while simultaneously enforcing token overlap across scales, and b) a Direct Preference Optimization (DPO) regularization term that, relying solely on the LR and HR tokenizations, encourages the transformer to produce the latter over the former. To the best of our knowledge, this is the first time a quantizer is trained to force semantically consistent residuals at different scales, and the first time that preference-based optimization is used to train a VAR. Using these two components, our model can denoise the LR image and super-resolve at half and full target upscale factors in a single forward pass. Additionally, we achieve \textit{state-of-the-art results on ISR}, while using a small model (300M params vs ~1B params of VARSR), and without using external training data.
Related papers
- Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling [50.34513854725803]
Arbitrary-scale super-resolution (ASSR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs with arbitrary upsampling factors.<n>We propose a novel ContinuousSR framework with a Pixel-to-Gaussian paradigm, which explicitly reconstructs 2D continuous HR signals from LR images using Gaussian Splatting.
arXiv Detail & Related papers (2025-03-09T13:43:57Z) - Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution [10.074968164380314]
Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR)<n>We develop two novel techniques to generalize GS for ASR.<n>We implement an efficient differentiable 2D GPU/CUDA-based scale-awareization to render super-aware images.
arXiv Detail & Related papers (2025-01-12T15:14:58Z) - M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation [39.97174784206976]
We show that this scale-wise autoregressive framework can be effectively decoupled into textitintra-scale modeling
We apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead.
Experiments demonstrate that our method outperforms existing models in both image quality and generation speed.
arXiv Detail & Related papers (2024-11-15T18:54:42Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called Timestep-Aware Diffusion Model (TADM) for extreme image rescaling.<n>TADM performs rescaling operations in the latent space of a pre-trained autoencoder.<n>It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
This paper diverges from vision transformers by using a computationally-efficient WaveMix-based fully convolutional architecture -- WavePaint.
It uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing along with convolutional layers.
Our model even outperforms current GAN-based architectures in CelebA-HQ dataset without using an adversarially trainable discriminator.
arXiv Detail & Related papers (2023-07-01T18:41:34Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.