論文の概要: PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
- arxiv url: http://arxiv.org/abs/2506.04996v1
- Date: Thu, 05 Jun 2025 13:05:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.713216
- Title: PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
- Title(参考訳): PATS:多視点スポーツスキル評価のための熟練度対応型テンポラルサンプリング
- Authors: Edoardo Bianchi, Antonio Liotta,
- Abstract要約: 時間サンプリング(PATS)は、多視点スキルアセスメントのための連続時間セグメント内の完全な基本動作を保存する。
PATSは動画を適応的に分割し、分析された各部分が重要なパフォーマンスコンポーネントの完全な実行を含むことを保証する。
PATSはすべての表示構成で最先端の精度を上回っている。
- 参考スコア(独自算出の注目度): 0.49109372384514843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
- Abstract(参考訳): 自動スポーツスキルアセスメントでは、初心者の成績と専門家を区別する基本的な動きパターンを捉える必要があるが、現在のビデオサンプリング手法は、熟練度評価に不可欠な時間的連続性を阻害する。
この目的のために,多視点スキル評価のための連続時間セグメント内の完全な基本動作を保存する新しいサンプリング戦略であるPATS(Proficiency-Aware Temporal Smpling)を導入する。
PATSは動画を適応的に分割し、分析された各部分が重要なパフォーマンスコンポーネントの完全な実行を含むことを保証し、このプロセスを複数のセグメントにわたって繰り返し、時間的コヒーレンスを維持しながら情報カバレッジを最大化する。
SkillFormerによるEgoExo4Dベンチマークで評価されたPATSは、すべての視聴構成(+0.65%から+3.05%)で最先端の精度を超え、挑戦的なドメイン(+26.22%のボルドリング、+2.39%の音楽、+1.13%のバスケットボール)でかなりの利益を得ている。
システマティック分析により,PATSは動的スポーツにおける高周波サンプリングから細粒度セグメンテーションまで多種多様な活動特性に適応し,実世界のアプリケーションにおける自動スキルアセスメントを向上する時間的サンプリングへの適応的アプローチとしての有効性を実証した。
関連論文リスト
- Action Quality Assessment via Hierarchical Pose-guided Multi-stage Contrastive Regression [25.657978409890973]
アクションアセスメント(AQA)は、運動性能の自動的、公平な評価を目的としている。
現在の手法では、動画を固定フレームに分割することに集中しており、サブアクションの時間的連続性を損なう。
階層的なポーズ誘導型多段階コントラスト回帰による行動品質評価手法を提案する。
論文 参考訳(メタデータ) (2025-01-07T10:20:16Z) - FACTS: Fine-Grained Action Classification for Tactical Sports [4.810476621219244]
フェンシングやボクシングのような速いペースで密着したスポーツにおけるきめ細かいアクションの分類は、固有の課題である。
我々は、生のビデオデータを直接処理する、きめ細かいアクション認識のための新しいアプローチであるFACTSを紹介する。
本研究は, トレーニング, パフォーマンス分析, スペクタエンゲージメントを向上し, 戦術スポーツにおける行動分類のための新しいベンチマークを設定した。
論文 参考訳(メタデータ) (2024-12-21T03:00:25Z) - Revisiting the Power of Prompt for Visual Tuning [50.11465784194896]
本研究では,プロンプトとパッチトークンの相互関係について検討した。
プロンプトトークンはパッチトークンと高い相互情報を共有する傾向にあるという観測から着想を得て,下流トークンのプロトタイプを用いた初期化プロンプトを提案する。
本手法は, 自己指導型プレトレーニングの適応性を著しく向上させ, 少なくとも10%から30%のタスク性能向上を実現した。
論文 参考訳(メタデータ) (2024-02-04T07:49:02Z) - Hierarchical Side-Tuning for Vision Transformers [33.536948382414316]
微調整された事前訓練された視覚変換器(ViTs)は、視覚認識タスクの強化に大きく貢献している。
PETLは、完全な微調整に比べてパラメータ更新が少なく、高いパフォーマンスを実現する可能性がある。
本稿では,多様な下流タスクへのVTモデルの転送を容易にする革新的PETL手法である階層側チューニング(HST)を紹介する。
論文 参考訳(メタデータ) (2023-10-09T04:16:35Z) - Multiscale Video Pretraining for Long-Term Activity Forecasting [67.06864386274736]
マルチスケールビデオプレトレーニングは、複数の時間スケールで将来のビデオクリップの文脈化された表現を予測することを学ぶことによって、予測のための堅牢な表現を学習する。
MVPは、ビデオ内のアクションは、通常、短い時間スケールでアトミックアクションが起こり、より複雑なアクションがより長い時間スケールで発生する、マルチスケールな性質を持つ、という私たちの観察に基づいています。
Ego4DとEpic-Kitchens-55/100データセットにわたる包括的な実験では、MVPが最先端のメソッドをかなりのマージンで上回っていることが示されています。
論文 参考訳(メタデータ) (2023-07-24T14:55:15Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - Learning Sparse Temporal Video Mapping for Action Quality Assessment in
Floor Gymnastics [26.717033245063092]
体操フロアルーチンを組み込んだ新しいデータセットAGF-Olympicsを導入する。
本稿では,密集した特徴空間を複素結合を解離してスパース表現にマッピングする識別的注意モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-15T14:13:03Z) - Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation [95.31590177308482]
我々は,トレーニング期間中に複数のトレーニング損失を柔軟に調整する自動マルチロス適応(ada-segment)を提案する。
エンドツーエンドアーキテクチャにより、ada-segmentはハイパーパラメータを再チューニングすることなく、異なるデータセットに一般化する。
Ada-Segmentは、バニラベースラインからCOCOval分割に2.7%のパノラマ品質(PQ)改善をもたらし、COCOテストデブ分割に最新の48.5%PQ、ADE20Kデータセットに32.9%PQを達成しました。
論文 参考訳(メタデータ) (2020-12-07T11:43:10Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
本稿では,長期ビデオにおけるアクションアセスメントのための新しいハイブリットDynAmic-static Context-aware AttenTION NETwork(ACTION-NET)を提案する。
ビデオのダイナミックな情報を学習すると同時に,特定フレームにおける検出した選手の静的姿勢にも焦点をあてる。
2つのストリームの特徴を組み合わせることで、専門家が与えた地道的なスコアによって監督され、最終的なビデオスコアを後退させます。
論文 参考訳(メタデータ) (2020-08-13T15:51:42Z) - Temporal Context Aggregation for Video Retrieval with Contrastive
Learning [81.12514007044456]
フレームレベルの特徴間の時間的長距離情報を組み込んだビデオ表現学習フレームワークTCAを提案する。
提案手法は,映像レベルの特徴を持つ最先端の手法に対して,FIVR-200Kでは17% mAPの大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2020-08-04T05:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。