論文の概要: FACTS: Fine-Grained Action Classification for Tactical Sports
- arxiv url: http://arxiv.org/abs/2412.16454v1
- Date: Sat, 21 Dec 2024 03:00:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:52.847836
- Title: FACTS: Fine-Grained Action Classification for Tactical Sports
- Title(参考訳): FACTS: 戦術スポーツのためのファイングラインドアクション分類
- Authors: Christopher Lai, Jason Mo, Haotian Xia, Yuan-fang Wang,
- Abstract要約: フェンシングやボクシングのような速いペースで密着したスポーツにおけるきめ細かいアクションの分類は、固有の課題である。
我々は、生のビデオデータを直接処理する、きめ細かいアクション認識のための新しいアプローチであるFACTSを紹介する。
本研究は, トレーニング, パフォーマンス分析, スペクタエンゲージメントを向上し, 戦術スポーツにおける行動分類のための新しいベンチマークを設定した。
- 参考スコア(独自算出の注目度): 4.810476621219244
- License:
- Abstract: Classifying fine-grained actions in fast-paced, close-combat sports such as fencing and boxing presents unique challenges due to the complexity, speed, and nuance of movements. Traditional methods reliant on pose estimation or fancy sensor data often struggle to capture these dynamics accurately. We introduce FACTS, a novel transformer-based approach for fine-grained action recognition that processes raw video data directly, eliminating the need for pose estimation and the use of cumbersome body markers and sensors. FACTS achieves state-of-the-art performance, with 90% accuracy on fencing actions and 83.25% on boxing actions. Additionally, we present a new publicly available dataset featuring 8 detailed fencing actions, addressing critical gaps in sports analytics resources. Our findings enhance training, performance analysis, and spectator engagement, setting a new benchmark for action classification in tactical sports.
- Abstract(参考訳): フェンシングやボクシングのような速いペースで密着したスポーツにおいて、きめ細かなアクションを分類することは、運動の複雑さ、スピード、ニュアンスによって固有の課題をもたらす。
従来の方法では、ポーズ推定や豪華なセンサーデータに依存して、これらのダイナミクスを正確に捉えるのに苦労することが多い。
FACTSは, 映像データを直接処理し, ポーズ推定の必要性を排除し, 身体マーカーやセンサの使用を不要とする, アクション認識を微粒化するための, トランスフォーマーをベースとした新しいアプローチである。
FACTSは、フェンシングアクションで90%、ボクシングアクションで83.25%の精度で最先端のパフォーマンスを達成する。
さらに,スポーツ分析資源における重要なギャップに対処する8つの詳細なフェンシングアクションを特徴とする,新たに公開されたデータセットも提示する。
本研究は, トレーニング, パフォーマンス分析, スペクタエンゲージメントを向上し, 戦術スポーツにおける行動分類のための新しいベンチマークを設定した。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition [57.17966905865054]
実生活における行動認識の応用は、しばしば微妙な動きのきめ細かい理解を必要とする。
既存の半教師ありアクション認識は主に粗いアクション認識に焦点を当てている。
そこで我々は,微粒なアクションペアの識別を効果的に行うための,アライナビリティ検証に基づくメトリック学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T20:08:06Z) - Benchmarking Badminton Action Recognition with a New Fine-Grained Dataset [16.407837909069073]
高品質なバドミントン映像から得られたビデオバドミントンデータセットを紹介する。
VideoBadmintonの導入は、バドミントンアクション認識だけでなく、きめ細かいアクションを認識するためのデータセットも提供する。
論文 参考訳(メタデータ) (2024-03-19T02:52:06Z) - Automated Hit-frame Detection for Badminton Match Analysis [1.3300217947936062]
本研究では,最新の深層学習技術を用いて,マッチビデオからヒットフレームを自動的に検出し,バドミントンにおけるスポーツ分析の進歩を目指す。
ヒットフレームに含まれるデータは、その後プレイヤーのストロークやコート上での動きを合成したり、トレーニングタスクの分析や競争戦略などの下流のアプリケーションに利用することができる。
本研究では,映像トリミングにおけるショットアングル認識の精度99%,シャトルコック飛行方向予測におけるキーポイントシーケンスの適用精度92%以上を達成し,ラリーワイドビデオトリミングとヒットフレーム検出の評価結果を報告した。
論文 参考訳(メタデータ) (2023-07-29T15:01:27Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - Video Pose Distillation for Few-Shot, Fine-Grained Sports Action
Recognition [17.84533144792773]
Video Pose Distillation (VPD)は、新しいビデオドメインの機能を学ぶための弱い教師付きテクニックである。
VPDは、4つの実世界のスポーツビデオデータセットで、いくつかのショット、きめ細かなアクション認識、検索、検出タスクのパフォーマンスを改善する。
論文 参考訳(メタデータ) (2021-09-03T04:36:12Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
本稿では,長期ビデオにおけるアクションアセスメントのための新しいハイブリットDynAmic-static Context-aware AttenTION NETwork(ACTION-NET)を提案する。
ビデオのダイナミックな情報を学習すると同時に,特定フレームにおける検出した選手の静的姿勢にも焦点をあてる。
2つのストリームの特徴を組み合わせることで、専門家が与えた地道的なスコアによって監督され、最終的なビデオスコアを後退させます。
論文 参考訳(メタデータ) (2020-08-13T15:51:42Z) - Fusing Motion Patterns and Key Visual Information for Semantic Event
Recognition in Basketball Videos [87.29451470527353]
バスケットボールビデオのセマンティックイベント認識のために,グローバル・ローカル・モーション・パターン(MP)とキー視覚情報(KVI)を融合する手法を提案する。
カメラ調整の本質的特性に基づいて, 混合運動から大域的な動きを推定するアルゴリズムを提案する。
グローバル・ローカル・モーション・パターンを分離した2ストリーム3D CNNフレームワークを用いてグループ活動認識を行う。
論文 参考訳(メタデータ) (2020-07-13T10:15:44Z) - FSD-10: A Dataset for Competitive Sports Content Analysis [29.62110021022271]
フィギュアスケートデータセット(FSD-10)は、きめ細かいアクションのコレクションを持つように設計されている。
各クリップは毎秒30フレーム、解像度は1080ドルで720ドルだ。
FSD-10における動作認識手法の評価を行った。
論文 参考訳(メタデータ) (2020-02-09T08:04:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。