DACN: Dual-Attention Convolutional Network for Hyperspectral Image Super-Resolution
- URL: http://arxiv.org/abs/2506.05041v1
- Date: Thu, 05 Jun 2025 13:45:21 GMT
- Title: DACN: Dual-Attention Convolutional Network for Hyperspectral Image Super-Resolution
- Authors: Usman Muhammad, Jorma Laaksonen,
- Abstract summary: We introduce DACN, a dual-attention convolutional network for hyperspectral image super-resolution.<n>We infer separate attention maps for the channel and spatial dimensions to determine where to focus.<n>A custom optimized loss function is proposed that combines L2 regularization with spatial-spectral gradient loss.
- Score: 4.487807378174191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 2D convolutional neural networks (CNNs) have attracted significant attention for hyperspectral image super-resolution tasks. However, a key limitation is their reliance on local neighborhoods, which leads to a lack of global contextual understanding. Moreover, band correlation and data scarcity continue to limit their performance. To mitigate these issues, we introduce DACN, a dual-attention convolutional network for hyperspectral image super-resolution. Specifically, the model first employs augmented convolutions, integrating multi-head attention to effectively capture both local and global feature dependencies. Next, we infer separate attention maps for the channel and spatial dimensions to determine where to focus across different channels and spatial positions. Furthermore, a custom optimized loss function is proposed that combines L2 regularization with spatial-spectral gradient loss to ensure accurate spectral fidelity. Experimental results on two hyperspectral datasets demonstrate that the combination of multi-head attention and channel attention outperforms either attention mechanism used individually.
Related papers
- Hyperspectral Image Classification via Transformer-based Spectral-Spatial Attention Decoupling and Adaptive Gating [12.168520751389622]
Deep neural networks face several challenges in hyperspectral image classification.<n>This paper proposes a novel network architecture called STNet.<n>The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
arXiv Detail & Related papers (2025-06-10T01:24:35Z) - Dual-Hybrid Attention Network for Specular Highlight Removal [34.99543751199565]
Specular highlight removal plays a pivotal role in multimedia applications, as it enhances the quality and interpretability of images and videos.
Current state-of-the-art approaches often rely on additional priors or supervision, limiting their practicality and generalization capability.
We propose the Dual-Hybrid Attention Network for Specular Highlight Removal (DHAN-SHR), an end-to-end network that introduces novel hybrid attention mechanisms.
arXiv Detail & Related papers (2024-07-17T01:52:41Z) - Rethinking Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
Blind-spot networks (BSN) have been prevalent neural architectures in self-supervised image denoising (SSID)<n>We build a Transformer-based Blind-Spot Network (TBSN) which shows strong local fitting and global perspective abilities.
arXiv Detail & Related papers (2024-04-11T15:39:10Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
This paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure.
To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques.
ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab.
arXiv Detail & Related papers (2024-03-02T08:06:18Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.