Hyperspectral Image Classification via Transformer-based Spectral-Spatial Attention Decoupling and Adaptive Gating
- URL: http://arxiv.org/abs/2506.08324v2
- Date: Wed, 11 Jun 2025 01:30:34 GMT
- Title: Hyperspectral Image Classification via Transformer-based Spectral-Spatial Attention Decoupling and Adaptive Gating
- Authors: Guandong Li, Mengxia Ye,
- Abstract summary: Deep neural networks face several challenges in hyperspectral image classification.<n>This paper proposes a novel network architecture called STNet.<n>The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
- Score: 12.168520751389622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more effectively extract and fuse spatial context with fine spectral information in hyperspectral image (HSI) classification, this paper proposes a novel network architecture called STNet. The core advantage of STNet stems from the dual innovative design of its Spatial-Spectral Transformer module: first, the fundamental explicit decoupling of spatial and spectral attention ensures targeted capture of key information in HSI; second, two functionally distinct gating mechanisms perform intelligent regulation at both the fusion level of attention flows (adaptive attention fusion gating) and the internal level of feature transformation (GFFN). This characteristic demonstrates superior feature extraction and fusion capabilities compared to traditional convolutional neural networks, while reducing overfitting risks in small-sample and high-noise scenarios. STNet enhances model representation capability without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
Related papers
- Dual-Branch Residual Network for Cross-Domain Few-Shot Hyperspectral Image Classification with Refined Prototype [17.404026075350707]
Convolutional neural networks (CNNs) are effective for hyperspectral image (HSI) classification.<n>Their 3D convolutional structures introduce high computational costs and limited generalization in few-shot scenarios.<n>This letter proposes a dual-branch residual network that integrates spatial and spectral features via parallel branches.
arXiv Detail & Related papers (2025-04-27T02:04:49Z) - CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
Current convolutional neural networks (CNNs) focus on local features in hyperspectral data.<n> Transformer framework excels at extracting global features from hyperspectral imagery.<n>This research introduces the Convolutional Meet Transformer Network (CMTNet)
arXiv Detail & Related papers (2024-06-20T07:56:51Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions.
We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images.
Our proposed method outperforms state-of-the-art methods for HSI classification.
arXiv Detail & Related papers (2023-04-19T18:32:52Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.