論文の概要: Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training
- arxiv url: http://arxiv.org/abs/2506.05092v1
- Date: Thu, 05 Jun 2025 14:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.761736
- Title: Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training
- Title(参考訳): 3次元ガウススプラッティングを用いた自律移動ロボットの視覚訓練のための合成データセット生成
- Authors: Aneesh Deogan, Wout Beks, Peter Teurlings, Koen de Vos, Mark van den Brand, Rene van de Molengraft,
- Abstract要約: 本論文では,Unreal Engineにおける注釈付き合成データの自動生成手法を提案する。
合成データセットが実世界のデータセットに匹敵する性能を達成できることを実証する。
これは、ロボットサッカーにおけるオブジェクト検出アルゴリズムのトレーニングのための合成データの最初の応用である。
- 参考スコア(独自算出の注目度): 0.708987965338602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
- Abstract(参考訳): アノテーション付きデータセットは、オブジェクト検出のためのニューラルネットワークのトレーニングに不可欠だが、手作業による作成は時間と労働集約的であり、ヒューマンエラーを主眼とし、しばしば多様性に制限される。
この課題は、多様で動的なシナリオが代表的データセットの作成をさらに複雑にするロボット工学の分野において特に顕著である。
そこで本研究では,Unreal Engineにおける注釈付き合成データの自動生成手法を提案する。
提案手法は, フォトリアリスティックな3次元ガウススプラッツを高速な合成データ生成に活用する。
合成データセットは実世界のデータセットに匹敵する性能を達成でき、データの生成と注釈作成に要する時間を大幅に削減できることを示した。
さらに、実世界の画像の品質を生かし、合成データのスケーラビリティを向上させることで、実世界の画像と合成データを組み合わせることで、オブジェクト検出性能を著しく向上させる。
我々の知る限り、これはロボットサッカーの高度にダイナミックで多様な環境において、オブジェクト検出アルゴリズムを訓練するための合成データの最初の応用である。
バリデーション実験により、ロボットサッカーの試合シナリオでテストすると、合成画像に基づいて訓練された検出器が、手動で注釈付けされた現実世界の画像で訓練された検出器と同等に動作することが判明した。
提案手法は,従来のデータセット作成に代わる,スケーラブルで包括的な代替手段を提供する。
すべての要素が本質的に知られているシミュレータでデータセットを生成することで、手作業を大幅に削減しながら正確なアノテーションを確保することができ、多様なスケーラブルなトレーニングデータを必要とするロボットアプリケーションにとって特に価値がある。
関連論文リスト
- Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
本稿では,実世界の課題に対して,大規模な事前学習モデルを微調整するための一連の優れたプラクティスを統合する。
具体的には,合成データと実運転データとの相違を考慮に入れたいくつかの戦略を開発する。
我々の洞察は、先行芸術よりも新しいビュー合成のためのFIDを68.8%値下げする効果のある微調整につながる。
論文 参考訳(メタデータ) (2024-12-19T03:39:13Z) - Synthetica: Large Scale Synthetic Data for Robot Perception [21.415878105900187]
本稿では,ロバストな状態推定器を訓練するための大規模合成データ生成手法であるSyntheticaを提案する。
本稿では,ほとんどの状態推定問題のフロントエンドとして機能する重要な問題であるオブジェクト検出の課題に焦点を当てる。
レイトレーシングのデータを利用して270万の画像を生成し、高精度なリアルタイム検出変換器を訓練する。
我々は,従来のSOTAの9倍の50-100Hzの検出器を動作させながら,物体検出タスクにおける最先端性能を示す。
論文 参考訳(メタデータ) (2024-10-28T15:50:56Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
本稿では,合成データを用いた学習における事前学習対象検出器の性能向上手法を提案する。
提案手法は,実画像の事前学習から得られた有用な特徴を忘れずに,合成データから有能な情報を抽出することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-30T08:31:01Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
本稿では,ロボット工学研究のための現実的なアニメーション動的環境(GRADE)を作成するためのフレームワークを提案する。
GRADEは、完全なシミュレーション制御、ROS統合、現実物理学をサポートし、高い視覚的忠実度画像と地上真実データを生成するエンジン内にある。
合成データのみを用いてトレーニングしても、同一のアプリケーション領域における実世界の画像によく当てはまることを示す。
論文 参考訳(メタデータ) (2023-05-07T14:13:04Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Fake It Till You Make It: Face analysis in the wild using synthetic data
alone [9.081019005437309]
合成データだけで顔関連コンピュータビジョンを野生で実行可能であることを示す。
本稿では、手続き的に生成された3次元顔モデルと手作り資産の包括的ライブラリを組み合わせることで、前例のないリアリズムによるトレーニング画像のレンダリングを行う方法について述べる。
論文 参考訳(メタデータ) (2021-09-30T13:07:04Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。