MokA: Multimodal Low-Rank Adaptation for MLLMs
- URL: http://arxiv.org/abs/2506.05191v1
- Date: Thu, 05 Jun 2025 16:04:08 GMT
- Title: MokA: Multimodal Low-Rank Adaptation for MLLMs
- Authors: Yake Wei, Yu Miao, Dongzhan Zhou, Di Hu,
- Abstract summary: Multimodal low-rank Adaptation (MokA) is a multimodal-aware efficient fine-tuning strategy.<n>MokA compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction.
- Score: 11.440424554587674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we reveal that most current efficient multimodal fine-tuning methods are hindered by a key limitation: they are directly borrowed from LLMs, often neglecting the intrinsic differences of multimodal scenarios and even affecting the full utilization of all modalities. Inspired by our empirical observation, we argue that unimodal adaptation and cross-modal adaptation are two essential parts for the effective fine-tuning of MLLMs. From this perspective, we propose Multimodal low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy that takes multimodal characteristics into consideration. It compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive experiments cover three representative multimodal scenarios (audio-visual-text, visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2, Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of the proposed method. Ablation studies and efficiency evaluation are also conducted to fully asses our method. Overall, we think MokA provides a more targeted solution for efficient adaptation of MLLMs, paving the way for further exploration. The project page is at https://gewu-lab.github.io/MokA.
Related papers
- PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - Evaluating and Steering Modality Preferences in Multimodal Large Language Model [32.94581875014947]
Multimodal large language models (MLLMs) have achieved remarkable performance on complex tasks with multimodal context.<n>We show that all 18 tested MLLMs generally demonstrate clear modality bias, and modality preference can be influenced by external interventions.<n>We propose a probing and steering method based on representation engineering to explicitly control modality preference.
arXiv Detail & Related papers (2025-05-27T10:07:59Z) - TAMP: Token-Adaptive Layerwise Pruning in Multimodal Large Language Models [23.916205754112774]
Multimodal Large Language Models (MLLMs) have shown remarkable versatility in understanding diverse multimodal data and tasks.<n>We propose TAMP, a simple yet effective pruning framework tailored for MLLMs.<n>We validate our method on two state-of-the-art MLLMs: LLaVA-NeXT, designed for vision-language tasks, and VideoLLaMA2, capable of processing audio, visual, and language modalities.
arXiv Detail & Related papers (2025-04-14T05:44:38Z) - CHiP: Cross-modal Hierarchical Direct Preference Optimization for Multimodal LLMs [107.21334626890713]
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities.<n>We propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations.<n>We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations.
arXiv Detail & Related papers (2025-01-28T02:05:38Z) - A Wander Through the Multimodal Landscape: Efficient Transfer Learning via Low-rank Sequence Multimodal Adapter [8.481711069173262]
We propose the loW-rank sequence multimodal adapter (Wander)<n>We first use the outer product to fuse the information from different modalities in an element-wise way effectively.<n>For efficiency, we use CP decomposition to factorize tensors into rank-one components and achieve substantial parameter reduction.<n>We conduct extensive experiments on datasets with different numbers of modalities, where Wander outperforms state-of-the-art efficient transfer learning methods consistently.
arXiv Detail & Related papers (2024-12-12T06:26:02Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
arXiv Detail & Related papers (2024-09-24T01:40:24Z) - FoRA: Low-Rank Adaptation Model beyond Multimodal Siamese Network [19.466279425330857]
We propose a novel multimodal object detector, named Low-rank Modal Adaptors (LMA) with a shared backbone.
Our work was submitted to ACM MM in April 2024, but was rejected.
arXiv Detail & Related papers (2024-07-23T02:27:52Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.<n>We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.<n>We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.