論文の概要: SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2506.05221v1
- Date: Thu, 05 Jun 2025 16:38:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.827324
- Title: SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
- Title(参考訳): 包括的医用画像分割のためのSAM対応テストタイム適応
- Authors: Jianghao Wu, Yicheng Wu, Yutong Xie, Wenjia Bai, You Zhang, Feilong Tang, Yulong Li, Yasmeen George, Imran Razzak,
- Abstract要約: 本研究では、SAMの一般化を保ちながら、テストタイムフレームワークによる医用画像のセグメンテーション性能を向上させるパイプラインであるSAM-Aware Test-Time Adaptation (SAM-TTA)を提案する。
本フレームワークは,(1)単一チャネルの医用画像から3チャンネルのSAM対応入力へ適応的に変換する自己適応型ベジエ曲線変換(SBCT)と,(2)SAMの内部表現を医用意味論に整合させるために整合性学習を利用するDual-scale Uncertainty-driven Mean Teacher adaptation(DUMT)からなる。
- 参考スコア(独自算出の注目度): 27.96281051256966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal medical image segmentation using the Segment Anything Model (SAM) remains challenging due to its limited adaptability to medical domains. Existing adaptations, such as MedSAM, enhance SAM's performance in medical imaging but at the cost of reduced generalization to unseen data. Therefore, in this paper, we propose SAM-aware Test-Time Adaptation (SAM-TTA), a fundamentally different pipeline that preserves the generalization of SAM while improving its segmentation performance in medical imaging via a test-time framework. SAM-TTA tackles two key challenges: (1) input-level discrepancies caused by differences in image acquisition between natural and medical images and (2) semantic-level discrepancies due to fundamental differences in object definition between natural and medical domains (e.g., clear boundaries vs. ambiguous structures). Specifically, our SAM-TTA framework comprises (1) Self-adaptive Bezier Curve-based Transformation (SBCT), which adaptively converts single-channel medical images into three-channel SAM-compatible inputs while maintaining structural integrity, to mitigate the input gap between medical and natural images, and (2) Dual-scale Uncertainty-driven Mean Teacher adaptation (DUMT), which employs consistency learning to align SAM's internal representations to medical semantics, enabling efficient adaptation without auxiliary supervision or expensive retraining. Extensive experiments on five public datasets demonstrate that our SAM-TTA outperforms existing TTA approaches and even surpasses fully fine-tuned models such as MedSAM in certain scenarios, establishing a new paradigm for universal medical image segmentation. Code can be found at https://github.com/JianghaoWu/SAM-TTA.
- Abstract(参考訳): Segment Anything Model (SAM) を用いた普遍的な医用画像分割は、医療領域への適応性に限界があるため、依然として困難である。
MedSAMのような既存の適応は、SAMの医療画像における性能を向上するが、一般化のコストを減らし、目に見えないデータに還元する。
そこで本稿では,SAM-Aware Test-Time Adaptation (SAM-TTA)を提案する。
SAM-TTAは,(1)自然画像と医用画像のイメージ取得の違いによる入力レベルの相違,(2)自然領域と医用領域のオブジェクト定義の根本的な違いによる意味レベルの相違(明確な境界とあいまいな構造)の2つに対処する。
具体的には,(1)単一チャネルの医用画像を3チャンネルのSAM互換の入力に適応的に変換する自己適応型Bezier Curve-based Transformation (SBCT) と,(2)医用画像と自然画像の入力ギャップを軽減するためのDual-scale Uncertainty-driven Mean Teacher Adaptation (DUMT) と,SAMの内部表現を医用セマンティクスに整合させ,補助的監督や高価なリトレーニングなしに効率よく適応できるようにする。
5つの公開データセットに対する大規模な実験により、SAM-TTAは既存のTTAアプローチより優れており、特定のシナリオにおいてMedSAMのような完全に微調整されたモデルよりも優れており、普遍的な医用画像セグメンテーションのための新しいパラダイムを確立している。
コードはhttps://github.com/JianghaoWu/SAM-TTAで見ることができる。
関連論文リスト
- Few-Shot Adaptation of Training-Free Foundation Model for 3D Medical Image Segmentation [8.78725593323412]
FATE-SAM (Few-shot Adaptation of Training-frEe SAM) は、3次元医用画像セグメンテーションに高度なセグメンテーションモデル2 (SAM2) を適用するために設計された新しい手法である。
FATE-SAMはSAM2の事前訓練されたモジュールを再組み立てし、少数のサポート例を活用する。
複数の医用画像データセット上でFATE-SAMを評価し、教師付き学習方法、ゼロショットSAMアプローチ、微調整医療SAM手法と比較した。
論文 参考訳(メタデータ) (2025-01-15T20:44:21Z) - Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
半教師型医用画像分割のための知識蒸留フレームワークKnowSAMを提案する。
我々のモデルは最先端の半教師付きセグメンテーションアプローチより優れている。
論文 参考訳(メタデータ) (2024-12-18T11:19:23Z) - DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - ESP-MedSAM: Efficient Self-Prompting SAM for Universal Domain-Generalized Medical Image Segmentation [18.388979166848962]
Segment Anything Model (SAM)は両方の設定でその可能性を実証している。
ESP-MedSAM という汎用的な領域一般化医療画像分割のための効率的なセルフプロンプトSAM を提案する。
ESP-MedSAMは様々な医用画像のセグメンテーションタスクにおいて最先端の成果を上げている。
論文 参考訳(メタデータ) (2024-07-19T09:32:30Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。