Conservative classifiers do consistently well with improving agents: characterizing statistical and online learning
- URL: http://arxiv.org/abs/2506.05252v2
- Date: Thu, 07 Aug 2025 17:13:46 GMT
- Title: Conservative classifiers do consistently well with improving agents: characterizing statistical and online learning
- Authors: Dravyansh Sharma, Alec Sun,
- Abstract summary: We characterize so-called learnability with improvements across multiple new axes.<n>We show how to learn in more challenging settings, achieving lower generalization error under well-studied bounded noise models.<n>We resolve open questions posed by Attias et al. for both proper and improper learning.
- Score: 7.857499581522375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is now ubiquitous in societal decision-making, for example in evaluating job candidates or loan applications, and it is increasingly important to take into account how classified agents will react to the learning algorithms. The majority of recent literature on strategic classification has focused on reducing and countering deceptive behaviors by the classified agents, but recent work of Attias et al. identifies surprising properties of learnability when the agents genuinely improve in order to attain the desirable classification, such as smaller generalization error than standard PAC-learning. In this paper we characterize so-called learnability with improvements across multiple new axes. We introduce an asymmetric variant of minimally consistent concept classes and use it to provide an exact characterization of proper learning with improvements in the realizable setting. While prior work studies learnability only under general, arbitrary agent improvement regions, we give positive results for more natural Euclidean ball improvement sets. In particular, we characterize improper learning under a mild generative assumption on the data distribution. We further show how to learn in more challenging settings, achieving lower generalization error under well-studied bounded noise models and obtaining mistake bounds in realizable and agnostic online learning. We resolve open questions posed by Attias et al. for both proper and improper learning.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
We propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions.
Our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes.
arXiv Detail & Related papers (2024-07-16T16:02:27Z) - Bayesian Strategic Classification [11.439576371711711]
We study the study of partial information release by the learner in strategic classification.
We show how such partial information release can, counter-intuitively, benefit the learner's accuracy, despite increasing agents' abilities to manipulate.
arXiv Detail & Related papers (2024-02-13T19:51:49Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Learning the Finer Things: Bayesian Structure Learning at the
Instantiation Level [0.0]
Successful machine learning methods require a trade-off between memorization and generalization.
We present a novel probabilistic graphical model structure learning approach that can learn, generalize and explain in elusive domains.
arXiv Detail & Related papers (2023-03-08T02:31:49Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - New Insights on Reducing Abrupt Representation Change in Online
Continual Learning [69.05515249097208]
We focus on the change in representations of observed data that arises when previously unobserved classes appear in the incoming data stream.
We show that applying Experience Replay causes the newly added classes' representations to overlap significantly with the previous classes.
We propose a new method which mitigates this issue by shielding the learned representations from drastic adaptation to accommodate new classes.
arXiv Detail & Related papers (2022-03-08T01:37:00Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Essentials for Class Incremental Learning [43.306374557919646]
Class-incremental learning results on CIFAR-100 and ImageNet improve over the state-of-the-art by a large margin, while keeping the approach simple.
arXiv Detail & Related papers (2021-02-18T18:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.