Understanding Gender Bias in AI-Generated Product Descriptions
- URL: http://arxiv.org/abs/2506.05390v1
- Date: Tue, 03 Jun 2025 18:14:57 GMT
- Title: Understanding Gender Bias in AI-Generated Product Descriptions
- Authors: Markelle Kelly, Mohammad Tahaei, Padhraic Smyth, Lauren Wilcox,
- Abstract summary: We develop data-driven taxonomic categories of gender bias in the context of product description generation.<n>We illustrate how AI-generated product descriptions can uniquely surface gender biases in ways that require specialized detection and mitigation approaches.
- Score: 24.246331833109416
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While gender bias in large language models (LLMs) has been extensively studied in many domains, uses of LLMs in e-commerce remain largely unexamined and may reveal novel forms of algorithmic bias and harm. Our work investigates this space, developing data-driven taxonomic categories of gender bias in the context of product description generation, which we situate with respect to existing general purpose harms taxonomies. We illustrate how AI-generated product descriptions can uniquely surface gender biases in ways that require specialized detection and mitigation approaches. Further, we quantitatively analyze issues corresponding to our taxonomic categories in two models used for this task -- GPT-3.5 and an e-commerce-specific LLM -- demonstrating that these forms of bias commonly occur in practice. Our results illuminate unique, under-explored dimensions of gender bias, such as assumptions about clothing size, stereotypical bias in which features of a product are advertised, and differences in the use of persuasive language. These insights contribute to our understanding of three types of AI harms identified by current frameworks: exclusionary norms, stereotyping, and performance disparities, particularly for the context of e-commerce.
Related papers
- EMO-Debias: Benchmarking Gender Debiasing Techniques in Multi-Label Speech Emotion Recognition [49.27067541740956]
EMO-Debias is a large-scale comparison of 13 debiasing methods applied to multi-label SER.<n>Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization.<n>Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps.
arXiv Detail & Related papers (2025-06-05T05:48:31Z) - The LLM Wears Prada: Analysing Gender Bias and Stereotypes through Online Shopping Data [8.26034886618475]
We investigate whether Large Language Models can predict an individual's gender based solely on online shopping histories.<n>Using a dataset of historical online purchases from users in the United States, we evaluate the ability of six LLMs to classify gender.<n>Results indicate that while models can infer gender with moderate accuracy, their decisions are often rooted in stereotypical associations between product categories and gender.
arXiv Detail & Related papers (2025-04-02T17:56:08Z) - Gender Encoding Patterns in Pretrained Language Model Representations [17.101242741559428]
Gender bias in pretrained language models (PLMs) poses significant social and ethical challenges.<n>This study adopts an information-theoretic approach to analyze how gender biases are encoded within various encoder-based architectures.
arXiv Detail & Related papers (2025-03-09T19:17:46Z) - Blind Men and the Elephant: Diverse Perspectives on Gender Stereotypes in Benchmark Datasets [17.101242741559428]
This paper focuses on intrinsic bias mitigation and measurement strategies for language models.<n>We delve deeper into intrinsic measurements, identifying inconsistencies and suggesting that these benchmarks may reflect different facets of gender stereotype.<n>Our findings underscore the complexity of gender stereotyping in language models and point to new directions for developing more refined techniques to detect and reduce bias.
arXiv Detail & Related papers (2025-01-02T09:40:31Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [91.86718720024825]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.<n>Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.<n>We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.<n>GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes [7.718858707298602]
Large language models (LLMs) have been widely integrated into production pipelines, like recruitment and recommendation systems.<n>This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making.
arXiv Detail & Related papers (2024-05-06T18:09:32Z) - Generalizing Fairness to Generative Language Models via Reformulation of Non-discrimination Criteria [4.738231680800414]
This paper studies how to uncover and quantify the presence of gender biases in generative language models.
We derive generative AI analogues of three well-known non-discrimination criteria from classification, namely independence, separation and sufficiency.
Our results address the presence of occupational gender bias within such conversational language models.
arXiv Detail & Related papers (2024-03-13T14:19:08Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
We propose the Gender Stereotype Reinforcement (GSR) measure, which quantifies the tendency of a Search Engines to support gender stereotypes.
GSR is the first specifically tailored measure for Information Retrieval, capable of quantifying representational harms.
arXiv Detail & Related papers (2020-09-02T20:45:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.