Gen4D: Synthesizing Humans and Scenes in the Wild
- URL: http://arxiv.org/abs/2506.05397v1
- Date: Tue, 03 Jun 2025 20:04:41 GMT
- Title: Gen4D: Synthesizing Humans and Scenes in the Wild
- Authors: Jerrin Bright, Zhibo Wang, Yuhao Chen, Sirisha Rambhatla, John Zelek, David Clausi,
- Abstract summary: We introduce Gen4D, a fully automated pipeline for generating diverse and photorealistic 4D human animations.<n>We present SportPAL, a large-scale synthetic dataset spanning three sports: baseball, icehockey, and soccer.<n>Gen4D and SportPAL provide a scalable foundation for constructing synthetic datasets tailored to in-the-wild human-centric vision tasks.
- Score: 10.696169692478275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lack of input data for in-the-wild activities often results in low performance across various computer vision tasks. This challenge is particularly pronounced in uncommon human-centric domains like sports, where real-world data collection is complex and impractical. While synthetic datasets offer a promising alternative, existing approaches typically suffer from limited diversity in human appearance, motion, and scene composition due to their reliance on rigid asset libraries and hand-crafted rendering pipelines. To address this, we introduce Gen4D, a fully automated pipeline for generating diverse and photorealistic 4D human animations. Gen4D integrates expert-driven motion encoding, prompt-guided avatar generation using diffusion-based Gaussian splatting, and human-aware background synthesis to produce highly varied and lifelike human sequences. Based on Gen4D, we present SportPAL, a large-scale synthetic dataset spanning three sports: baseball, icehockey, and soccer. Together, Gen4D and SportPAL provide a scalable foundation for constructing synthetic datasets tailored to in-the-wild human-centric vision tasks, with no need for manual 3D modeling or scene design.
Related papers
- Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors [31.277540988829976]
This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets.<n>We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images.
arXiv Detail & Related papers (2025-03-25T23:55:47Z) - 4D Gaussian Splatting: Modeling Dynamic Scenes with Native 4D Primitives [115.67081491747943]
Dynamic 3D scene representation and novel view synthesis are crucial for enabling AR/VR and metaverse applications.<n>We reformulate the reconstruction of a time-varying 3D scene as approximating its underlying 4D volume.<n>We derive several compact variants that effectively reduce the memory footprint to address its storage bottleneck.
arXiv Detail & Related papers (2024-12-30T05:30:26Z) - Human-Aware 3D Scene Generation with Spatially-constrained Diffusion Models [16.259040755335885]
Previous auto-regression-based 3D scene generation methods have struggled to accurately capture the joint distribution of multiple objects and input humans.
We introduce two spatial collision guidance mechanisms: human-object collision avoidance and object-room boundary constraints.
Our framework can generate more natural and plausible 3D scenes with precise human-scene interactions.
arXiv Detail & Related papers (2024-06-26T08:18:39Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - Synthesizing Diverse Human Motions in 3D Indoor Scenes [16.948649870341782]
We present a novel method for populating 3D indoor scenes with virtual humans that can navigate in the environment and interact with objects in a realistic manner.
Existing approaches rely on training sequences that contain captured human motions and the 3D scenes they interact with.
We propose a reinforcement learning-based approach that enables virtual humans to navigate in 3D scenes and interact with objects realistically and autonomously.
arXiv Detail & Related papers (2023-05-21T09:22:24Z) - CIRCLE: Capture In Rich Contextual Environments [69.97976304918149]
We propose a novel motion acquisition system in which the actor perceives and operates in a highly contextual virtual world.
We present CIRCLE, a dataset containing 10 hours of full-body reaching motion from 5 subjects across nine scenes.
We use this dataset to train a model that generates human motion conditioned on scene information.
arXiv Detail & Related papers (2023-03-31T09:18:12Z) - 3D Segmentation of Humans in Point Clouds with Synthetic Data [21.518379214837278]
We propose the task of joint 3D human semantic segmentation, instance segmentation and multi-human body-part segmentation.
We propose a framework for generating training data of synthetic humans interacting with real 3D scenes.
We also propose a novel transformer-based model, Human3D, which is the first end-to-end model for segmenting multiple human instances and their body-parts.
arXiv Detail & Related papers (2022-12-01T18:59:21Z) - HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor
Space Using Wearable IMUs and LiDAR [51.9200422793806]
Using only body-mounted IMUs and LiDAR, HSC4D is space-free without any external devices' constraints and map-free without pre-built maps.
Relationships between humans and environments are also explored to make their interaction more realistic.
arXiv Detail & Related papers (2022-03-17T10:05:55Z) - HSPACE: Synthetic Parametric Humans Animated in Complex Environments [67.8628917474705]
We build a large-scale photo-realistic dataset, Human-SPACE, of animated humans placed in complex indoor and outdoor environments.
We combine a hundred diverse individuals of varying ages, gender, proportions, and ethnicity, with hundreds of motions and scenes, in order to generate an initial dataset of over 1 million frames.
Assets are generated automatically, at scale, and are compatible with existing real time rendering and game engines.
arXiv Detail & Related papers (2021-12-23T22:27:55Z) - S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [103.65625425020129]
We represent the pedestrian's shape, pose and skinning weights as neural implicit functions that are directly learned from data.
We demonstrate the effectiveness of our approach on various datasets and show that our reconstructions outperform existing state-of-the-art methods.
arXiv Detail & Related papers (2021-01-17T02:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.