AD-EE: Early Exiting for Fast and Reliable Vision-Language Models in Autonomous Driving
- URL: http://arxiv.org/abs/2506.05404v1
- Date: Wed, 04 Jun 2025 08:25:40 GMT
- Title: AD-EE: Early Exiting for Fast and Reliable Vision-Language Models in Autonomous Driving
- Authors: Lianming Huang, Haibo Hu, Yufei Cui, Jiacheng Zuo, Shangyu Wu, Nan Guan, Chun Jason Xue,
- Abstract summary: Real-time application of Vision-Language Models (VLMs) is hindered by high latency and computational overhead.<n>We propose AD-EE, an Early Exit framework that incorporates domain characteristics of autonomous driving.<n>We show that our method significantly reduces latency, with maximum improvements reaching up to 57.58%, and enhances object detection accuracy, with maximum gains of up to 44%.
- Score: 14.250084730478797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of autonomous driving, deploying Vision-Language Models (VLMs) to enhance perception and decision-making has become increasingly common. However, the real-time application of VLMs is hindered by high latency and computational overhead, limiting their effectiveness in time-critical driving scenarios. This challenge is particularly evident when VLMs exhibit over-inference, continuing to process unnecessary layers even after confident predictions have been reached. To address this inefficiency, we propose AD-EE, an Early Exit framework that incorporates domain characteristics of autonomous driving and leverages causal inference to identify optimal exit layers. We evaluate our method on large-scale real-world autonomous driving datasets, including Waymo and the corner-case-focused CODA, as well as on a real vehicle running the Autoware Universe platform. Extensive experiments across multiple VLMs show that our method significantly reduces latency, with maximum improvements reaching up to 57.58%, and enhances object detection accuracy, with maximum gains of up to 44%.
Related papers
- DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving [15.457670964093156]
We propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM)<n>Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios.
arXiv Detail & Related papers (2025-05-26T00:49:35Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - LightEMMA: Lightweight End-to-End Multimodal Model for Autonomous Driving [9.447298958886265]
Vision-Language Models (VLMs) have demonstrated significant potential for end-to-end autonomous driving.<n>We introduce LightEMMA, a Lightweight End-to-End Multimodal Model for Autonomous driving.<n>We construct twelve autonomous driving agents using various VLMs and evaluate their performance on the nuScenes prediction task.
arXiv Detail & Related papers (2025-05-01T04:12:41Z) - VLM-C4L: Continual Core Dataset Learning with Corner Case Optimization via Vision-Language Models for Autonomous Driving [20.136096264189156]
We propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets.<n>VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases.
arXiv Detail & Related papers (2025-03-29T11:40:34Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
Vision-language models (VLMs) often suffer from limitations such as inadequate spatial perception and hallucination.<n>We propose a retrieval-augmented decision-making (RAD) framework to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes.<n>We fine-tune VLMs on a dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities.
arXiv Detail & Related papers (2025-03-18T03:25:57Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving [65.61999354218628]
We take the first step toward designing black-box adversarial attacks specifically targeting vision-language models (VLMs) in autonomous driving systems.<n>We propose Cascading Adversarial Disruption (CAD), which targets low-level reasoning breakdown by generating and injecting semantics.<n>We present Risky Scene Induction, which addresses dynamic adaptation by leveraging a surrogate VLM to understand and construct high-level risky scenarios.
arXiv Detail & Related papers (2025-01-23T11:10:02Z) - Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives [56.528835143531694]
We introduce DriveBench, a benchmark dataset designed to evaluate Vision-Language Models (VLMs)<n>Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding.<n>We propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding.
arXiv Detail & Related papers (2025-01-07T18:59:55Z) - VLM-AD: End-to-End Autonomous Driving through Vision-Language Model Supervision [20.43366384946928]
Vision-language models (VLMs) as teachers to enhance training.<n>VLM-AD achieves significant improvements in planning accuracy and reduced collision rates on the nuScenes dataset.
arXiv Detail & Related papers (2024-12-19T01:53:36Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases [102.05741859030951]
We propose CODA-LM, the first benchmark for the automatic evaluation of LVLMs for self-driving corner cases.<n>We show that using the text-only large language models as judges reveals even better alignment with human preferences than the LVLM judges.<n>Our CODA-VLM performs comparably with GPT-4V, even surpassing GPT-4V by +21.42% on the regional perception task.
arXiv Detail & Related papers (2024-04-16T14:20:55Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.