論文の概要: Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2506.05515v1
- Date: Thu, 05 Jun 2025 18:56:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 21:34:56.749359
- Title: Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
- Title(参考訳): 多変量確率時系列予測のための入賞方式
- Authors: Adrien Cortés, Rémi Rehm, Victor Letzelter,
- Abstract要約: 本稿では,MCL(Multiple Choice Learning)パラダイムを利用した時系列予測手法であるTimeMCLを紹介する。
提案手法では,複数の頭部を持つニューラルネットワークを用いて,予測の多様性を促進するためにWinner-Takes-All(WTA)損失を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce TimeMCL, a method leveraging the Multiple Choice Learning (MCL) paradigm to forecast multiple plausible time series futures. Our approach employs a neural network with multiple heads and utilizes the Winner-Takes-All (WTA) loss to promote diversity among predictions. MCL has recently gained attention due to its simplicity and ability to address ill-posed and ambiguous tasks. We propose an adaptation of this framework for time-series forecasting, presenting it as an efficient method to predict diverse futures, which we relate to its implicit quantization objective. We provide insights into our approach using synthetic data and evaluate it on real-world time series, demonstrating its promising performance at a light computational cost.
- Abstract(参考訳): 本稿では,MCL(Multiple Choice Learning)パラダイムを利用した時系列予測手法であるTimeMCLを紹介する。
提案手法では,複数の頭部を持つニューラルネットワークを用いて,予測の多様性を促進するためにWinner-Takes-All(WTA)損失を利用する。
MCLは最近、不明確で曖昧なタスクに対処する単純さと能力によって注目を集めている。
本稿では,このフレームワークを時系列予測に適用し,その暗黙的量子化目標に関連付ける多種多様な未来を予測する効率的な方法として提示する。
我々は、合成データを用いて、我々のアプローチに関する洞察を提供し、それを実世界の時系列で評価し、その有望な性能を軽量な計算コストで実証する。
関連論文リスト
- Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXLはプロトタイプベースの時系列エンコーダを統合するマルチモーダル予測フレームワークである。
より正確な予測と解釈可能な説明を生成する。
4つの実世界のデータセットに対する実証的な評価は、TimeXLがAUCで最大8.9%の改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-03-02T20:40:53Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Successive Model-Agnostic Meta-Learning for Few-Shot Fault Time Series
Prognosis [3.5573601621032944]
本稿では,連続した時系列をメタタスクとして扱う「擬似メタタスク」分割方式を提案する。
連続時系列を擬似メタタスクとして利用することで,データからより包括的な特徴や関係を抽出することができる。
異なるデータセットにまたがる手法の堅牢性を高めるための差分アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-04T02:07:47Z) - Optimizing accuracy and diversity: a multi-task approach to forecast
combinations [0.0]
両問題を同時に解くことに焦点を当てたマルチタスク最適化パラダイムを提案する。
標準的な機能ベースの予測アプローチに、さらなる学習と最適化のタスクが組み込まれている。
提案手法は,特徴に基づく予測において,多様性の本質的な役割を引き出すものである。
論文 参考訳(メタデータ) (2023-10-31T15:26:33Z) - Sinkhorn-Flow: Predicting Probability Mass Flow in Dynamical Systems
Using Optimal Transport [89.61692654941106]
そこで本稿では, 最適な輸送手段を用いて, 時間とともにそのような物質流を予測する新しい手法を提案する。
我々は、ソーシャルネットワークの設定において、コミュニティがどのように進化していくかを予測するタスクに、我々のアプローチを適用した。
論文 参考訳(メタデータ) (2023-03-14T07:25:44Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。