論文の概要: Breaking Anonymity at Scale: Re-identifying the Trajectories of 100K Real Users in Japan
- arxiv url: http://arxiv.org/abs/2506.05611v1
- Date: Thu, 05 Jun 2025 21:51:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.249043
- Title: Breaking Anonymity at Scale: Re-identifying the Trajectories of 100K Real Users in Japan
- Title(参考訳): 大規模匿名を破る - 日本における実ユーザ1万の軌跡の再同定
- Authors: Abhishek Kumar Mishra, Mathieu Cunche, Heber H. Arcolezi,
- Abstract要約: 匿名化されたYjmob100kデータセットを解析し,日本の10万人の利用者の軌跡を抽出した。
人口密度パターン、構造相関、時間的活動プロファイルを活用して、データセットの実際の位置とタイミングを再同定する。
この研究は、現在の軌道匿名化手法の限界を強調し、モビリティデータの公開においてより堅牢なプライバシーメカニズムを要求する。
- 参考スコア(独自算出の注目度): 0.8192907805418581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobility traces represent a critical class of personal data, often subjected to privacy-preserving transformations before public release. In this study, we analyze the anonymized Yjmob100k dataset, which captures the trajectories of 100,000 users in Japan, and demonstrate how existing anonymization techniques fail to protect their sensitive attributes. We leverage population density patterns, structural correlations, and temporal activity profiles to re-identify the dataset's real-world location and timing. Our results reveal that the anonymization process carried out for Yjmob100k is inefficient and preserves enough spatial and temporal structure to enable re-identification. This work underscores the limitations of current trajectory anonymization methods and calls for more robust privacy mechanisms in the publication of mobility data.
- Abstract(参考訳): モビリティトレースは個人データの重要なクラスであり、公開前にプライバシ保護の変換を受けることが多い。
本研究では,日本の利用者10万人の軌跡を抽出する匿名化Yjmob100kデータセットを分析し,既存の匿名化手法がそれらの機密属性を保護できないことを示す。
人口密度パターン、構造相関、時間的活動プロファイルを活用して、データセットの実際の位置とタイミングを再同定する。
以上の結果から,Yjmob100kの匿名化プロセスは効率が悪く,空間的・時間的構造が十分維持され,再同定が可能であることが判明した。
この研究は、現在の軌道匿名化手法の限界を強調し、モビリティデータの公開においてより堅牢なプライバシーメカニズムを要求する。
関連論文リスト
- Self-Refining Language Model Anonymizers via Adversarial Distillation [49.17383264812234]
大きな言語モデル(LLM)は、個人情報を推測する能力がプライバシーのリスクを生じさせるセンシティブなドメインで、ますます使われています。
本稿では,SLM(Small Language Model)を訓練し,効率的な匿名化を実現するための新しい蒸留フレームワークであるSEAL(Self-refining Anonymization with Language Model)を紹介する。
論文 参考訳(メタデータ) (2025-06-02T08:21:27Z) - Investigating Vulnerabilities of GPS Trip Data to Trajectory-User Linking Attacks [49.1574468325115]
単一旅行からなるGPS旅行データセットにおいて,ユーザ識別子を再構築する新たな攻撃を提案する。
個人識別が削除された場合でも再識別のリスクは大きい。
さらなる調査では、少数の人しか訪れていない場所を頻繁に訪れているユーザーは、再識別に弱い傾向にあることが示されている。
論文 参考訳(メタデータ) (2025-02-12T08:54:49Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification [55.741525129613535]
匿名化前の混乱」は、新しい二段階フレームワーク(DBAF)である
このフレームワークには、Contrastive Identity Disentanglement (CID)モジュールとKey-authorized Reversible Identity Anonymization (KRIA)モジュールが含まれている。
大規模な実験により,本手法は最先端の非識別手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - Privacy-Preserving Hierarchical Anonymization Framework over Encrypted Data [0.061446808540639365]
本研究では、同型暗号と2種類のドメインからなる秘密共有を用いた階層的k匿名化フレームワークを提案する。
実験により、2つのドメインを接続することで匿名化プロセスが促進され、提案したセキュア階層型アーキテクチャが実用的かつ効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-10-19T01:08:37Z) - A Trajectory K-Anonymity Model Based on Point Density and Partition [0.0]
本稿では点密度と分割(K PDP)に基づく軌道K匿名性モデルを開発する。
再識別攻撃に抵抗し、k匿名データセットのデータユーティリティ損失を低減する。
論文 参考訳(メタデータ) (2023-07-31T17:10:56Z) - A False Sense of Privacy: Towards a Reliable Evaluation Methodology for the Anonymization of Biometric Data [8.799600976940678]
生体データは、顔の特徴や歩行パターンのような特徴的な人間の特徴を含んでいる。
プライバシー保護は、匿名化の技法によって広範囲に提供される。
我々は、匿名化の性能を評価するために使用される最先端の手法を評価する。
論文 参考訳(メタデータ) (2023-04-04T08:46:14Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
本稿では,歩行者画像における新たなプライバシー保護匿名化問題について検討する。
認証されたモデルに対する個人識別情報(PII)を保存し、PIIが第三者によって認識されないようにする。
本稿では,全体匿名画像の可逆的生成が可能な共同学習可逆匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T07:04:16Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
本稿では,プライバシ保護を付加した独自のマイクロデータの有用性を活用した,代替的なマイクロデータ配信戦略を提案する。
当社の戦略は, 再識別の試みにおいても, 任意の属性に対する再識別リスクを60~80%削減する。
論文 参考訳(メタデータ) (2022-05-24T19:37:11Z) - How important are faces for person re-identification? [14.718372669984364]
顔検出およびぼかしアルゴリズムを適用し、複数の人気人物再識別データセットの匿名化バージョンを作成する。
我々は,この匿名化が標準メトリクスを用いた再識別性能に与える影響を評価する。
論文 参考訳(メタデータ) (2020-10-13T11:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。