論文の概要: Topology-aware Neural Flux Prediction Guided by Physics
- arxiv url: http://arxiv.org/abs/2506.05676v1
- Date: Fri, 06 Jun 2025 02:01:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.284826
- Title: Topology-aware Neural Flux Prediction Guided by Physics
- Title(参考訳): 物理によるトポロジーを考慮したニューラルフラックス予測
- Authors: Haoyang Jiang, Jindong Wang, Xingquan Zhu, Yi He,
- Abstract要約: グラフニューラルネットワーク(GNN)はしばしば、有向グラフを扱う際に、ノイズ信号の高周波成分を保存するのに苦労する。
本稿では, 1) 方向勾配をモデル化する明示的な差分行列と, 2) 自然法則に整合するGNN内を通過するメッセージを強制する暗黙の物理的制約とを組み合わせた新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 13.352980442733987
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) often struggle in preserving high-frequency components of nodal signals when dealing with directed graphs. Such components are crucial for modeling flow dynamics, without which a traditional GNN tends to treat a graph with forward and reverse topologies equal.To make GNNs sensitive to those high-frequency components thereby being capable to capture detailed topological differences, this paper proposes a novel framework that combines 1) explicit difference matrices that model directional gradients and 2) implicit physical constraints that enforce messages passing within GNNs to be consistent with natural laws. Evaluations on two real-world directed graph data, namely, water flux network and urban traffic flow network, demonstrate the effectiveness of our proposal.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はしばしば、有向グラフを扱う際に、ノイズ信号の高周波成分を保存するのに苦労する。
このようなコンポーネントはフローダイナミクスのモデリングに不可欠であり、従来のGNNはグラフを前後のトポロジと等しく扱う傾向があるため、GNNをこれらの高周波成分に敏感にすることで詳細なトポロジ的差異を捉えることができる。
1)方向勾配をモデル化する明示的な差分行列
2) 自然法則と整合性を保つために,GNN内を通過するメッセージを強制する暗黙の物理的制約。
実世界の2つのグラフデータ,すなわち水流ネットワークと都市交通流ネットワークの評価は,提案手法の有効性を実証する。
関連論文リスト
- Directed Homophily-Aware Graph Neural Network [7.539052660225002]
我々は、ホモフィア認識と指向性を考慮した新しいフレームワーク、Directed Homophily-aware Graph Neural Network (DHGNN)を提案する。
DHGNNは、ホモフィリーレベルと情報性に基づいてメッセージコントリビューションを適応的に変調するリセット可能なゲーティング機構を採用している。
解析により、このゲーティング機構は、方向のホモフィリギャップを捕捉し、層を横切るホモフィリを変動させ、複雑なグラフ構造上のメッセージパッシングの挙動について深い洞察を与えることが示された。
論文 参考訳(メタデータ) (2025-05-28T13:41:04Z) - Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
S-Temporal Latent Graph Structure Learning Network (ST-LGSL) を提案する。
このモデルは多層パーセプトロンとK-Nearest Neighborに基づくグラフを用いて、データ全体から潜在グラフトポロジ情報を学習する。
kNNの接地確率行列に基づく依存関係-kNNと類似度メートル法により、ST-LGSLは地理的およびノード類似度に重点を置くトップを集約する。
論文 参考訳(メタデータ) (2022-02-25T10:02:49Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。