Integer Binary-Range Alignment Neuron for Spiking Neural Networks
- URL: http://arxiv.org/abs/2506.05679v1
- Date: Fri, 06 Jun 2025 02:05:33 GMT
- Title: Integer Binary-Range Alignment Neuron for Spiking Neural Networks
- Authors: Binghao Ye, Wenjuan Li, Dong Wang, Man Yao, Bing Li, Weiming Hu, Dong Liang, Kun Shang,
- Abstract summary: Spiking Neural Networks (SNNs) are noted for their brain-like computation and energy efficiency, but their performance lags behind Artificial Neural Networks (ANNs) in tasks like image classification and object detection due to the limited representational capacity.<n>We propose a novel spiking neuron, Binary-Range Alignment Leaky Integrate-and-Fire to exponentially expand the information expression capacity of spiking neurons with only a slight energy increase.
- Score: 30.778583483869426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) are noted for their brain-like computation and energy efficiency, but their performance lags behind Artificial Neural Networks (ANNs) in tasks like image classification and object detection due to the limited representational capacity. To address this, we propose a novel spiking neuron, Integer Binary-Range Alignment Leaky Integrate-and-Fire to exponentially expand the information expression capacity of spiking neurons with only a slight energy increase. This is achieved through Integer Binary Leaky Integrate-and-Fire and range alignment strategy. The Integer Binary Leaky Integrate-and-Fire allows integer value activation during training and maintains spike-driven dynamics with binary conversion expands virtual timesteps during inference. The range alignment strategy is designed to solve the spike activation limitation problem where neurons fail to activate high integer values. Experiments show our method outperforms previous SNNs, achieving 74.19% accuracy on ImageNet and 66.2% mAP@50 and 49.1% mAP@50:95 on COCO, surpassing previous bests with the same architecture by +3.45% and +1.6% and +1.8%, respectively. Notably, our SNNs match or exceed ANNs' performance with the same architecture, and the energy efficiency is improved by 6.3${\times}$.
Related papers
- Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training [17.193023656793464]
The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs)
This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs.
We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference.
arXiv Detail & Related papers (2024-11-25T03:05:41Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection [15.154553304520164]
Spiking Neural Networks (SNNs) have bio-plaus and low-power advantages over Artificial Neural Networks (ANNs)<n>In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection.<n>We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks.
arXiv Detail & Related papers (2024-07-30T10:04:16Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Training a General Spiking Neural Network with Improved Efficiency and
Minimum Latency [4.503744528661997]
Spiking Neural Networks (SNNs) operate in an event-driven manner and employ binary spike representation.
This paper proposes a general training framework that enhances feature learning and activation efficiency within a limited time step.
arXiv Detail & Related papers (2024-01-05T09:54:44Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Dynamic Binary Neural Network by learning channel-wise thresholds [9.432747511001246]
We propose a dynamic BNN (DyBNN) incorporating dynamic learnable channel-wise thresholds of Sign function and shift parameters of PReLU.
The DyBNN based on two backbones of ReActNet (MobileNetV1 and ResNet18) achieve 71.2% and 67.4% top1-accuracy on ImageNet dataset.
arXiv Detail & Related papers (2021-10-08T17:41:36Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
We propose a simple importance-score metric that deactivates unimportant connections.
We achieve comparable performance for LeNet architectures on MNIST.
The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations.
arXiv Detail & Related papers (2021-09-22T15:33:49Z) - A Spiking Neural Network for Image Segmentation [3.4998703934432682]
We convert the deep Artificial Neural Network (ANN) architecture U-Net to a Spiking Neural Network (SNN) architecture using the Nengo framework.
Both rate-based and spike-based models are trained and optimized for benchmarking performance and power.
The neuromorphic implementation on the Intel Loihi neuromorphic chip is over 2x more energy-efficient than conventional hardware.
arXiv Detail & Related papers (2021-06-16T16:23:18Z) - ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training [68.63354877166756]
ActNN is a memory-efficient training framework that stores randomly quantized activations for back propagation.
ActNN reduces the memory footprint of the activation by 12x, and it enables training with a 6.6x to 14x larger batch size.
arXiv Detail & Related papers (2021-04-29T05:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.